Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern

Designing effective features is a fundamental problem in computer vision. However, it is usually difficult to achieve a great tradeoff between discriminative power and robustness. Previous works shown that spatial co-occurrence can boost the discriminative power of features. However the current exis...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 11 vom: 01. Nov., Seite 2199-213
1. Verfasser: Qi, Xianbiao (VerfasserIn)
Weitere Verfasser: Xiao, Rong, Li, Chun-Guang, Qiao, Yu, Guo, Jun, Tang, Xiaoou
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM252589394
003 DE-627
005 20250219030358.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2316826  |2 doi 
028 5 2 |a pubmed25n0841.xml 
035 |a (DE-627)NLM252589394 
035 |a (NLM)26353061 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qi, Xianbiao  |e verfasserin  |4 aut 
245 1 0 |a Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.03.2016 
500 |a Date Revised 11.03.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Designing effective features is a fundamental problem in computer vision. However, it is usually difficult to achieve a great tradeoff between discriminative power and robustness. Previous works shown that spatial co-occurrence can boost the discriminative power of features. However the current existing co-occurrence features are taking few considerations to the robustness and hence suffering from sensitivity to geometric and photometric variations. In this work, we study the Transform Invariance (TI) of co-occurrence features. Concretely we formally introduce a Pairwise Transform Invariance (PTI) principle, and then propose a novel Pairwise Rotation Invariant Co-occurrence Local Binary Pattern (PRICoLBP) feature, and further extend it to incorporate multi-scale, multi-orientation, and multi-channel information. Different from other LBP variants, PRICoLBP can not only capture the spatial context co-occurrence information effectively, but also possess rotation invariance. We evaluate PRICoLBP comprehensively on nine benchmark data sets from five different perspectives, e.g., encoding strategy, rotation invariance, the number of templates, speed, and discriminative power compared to other LBP variants. Furthermore we apply PRICoLBP to six different but related applications-texture, material, flower, leaf, food, and scene classification, and demonstrate that PRICoLBP is efficient, effective, and of a well-balanced tradeoff between the discriminative power and robustness 
650 4 |a Journal Article 
700 1 |a Xiao, Rong  |e verfasserin  |4 aut 
700 1 |a Li, Chun-Guang  |e verfasserin  |4 aut 
700 1 |a Qiao, Yu  |e verfasserin  |4 aut 
700 1 |a Guo, Jun  |e verfasserin  |4 aut 
700 1 |a Tang, Xiaoou  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 11 vom: 01. Nov., Seite 2199-213  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:36  |g year:2014  |g number:11  |g day:01  |g month:11  |g pages:2199-213 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2316826  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 11  |b 01  |c 11  |h 2199-213