Structured Labels in Random Forests for Semantic Labelling and Object Detection

Ensembles of randomized decision trees, known as Random Forests, have become a valuable machine learning tool for addressing many computer vision problems. Despite their popularity, few works have tried to exploit contextual and structural information in random forests in order to improve their perf...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 10 vom: 29. Okt., Seite 2104-16
1. Verfasser: Kontschieder, Peter (VerfasserIn)
Weitere Verfasser: Bulò, Samuel Rota, Pelillo, Marcello, Bischof, Horst
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM252585259
003 DE-627
005 20231224164425.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2315814  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252585259 
035 |a (NLM)26352638 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kontschieder, Peter  |e verfasserin  |4 aut 
245 1 0 |a Structured Labels in Random Forests for Semantic Labelling and Object Detection 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Ensembles of randomized decision trees, known as Random Forests, have become a valuable machine learning tool for addressing many computer vision problems. Despite their popularity, few works have tried to exploit contextual and structural information in random forests in order to improve their performance. In this paper, we propose a simple and effective way to integrate contextual information in random forests, which is typically reflected in the structured output space of complex problems like semantic image labelling. Our paper has several contributions: We show how random forests can be augmented with structured label information and be used to deliver structured low-level predictions. The learning task is carried out by employing a novel split function evaluation criterion that exploits the joint distribution observed in the structured label space. This allows the forest to learn typical label transitions between object classes and avoid locally implausible label configurations. We provide two approaches for integrating the structured output predictions obtained at a local level from the forest into a concise, global, semantic labelling. We integrate our new ideas also in the Hough-forest framework with the view of exploiting contextual information at the classification level to improve the performance on the task of object detection. Finally, we provide experimental evidence for the effectiveness of our approach on different tasks: Semantic image labelling on the challenging MSRCv2 and CamVid databases, reconstruction of occluded handwritten Chinese characters on the Kaist database and pedestrian detection on the TU Darmstadt databases 
650 4 |a Journal Article 
700 1 |a Bulò, Samuel Rota  |e verfasserin  |4 aut 
700 1 |a Pelillo, Marcello  |e verfasserin  |4 aut 
700 1 |a Bischof, Horst  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 10 vom: 29. Okt., Seite 2104-16  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:10  |g day:29  |g month:10  |g pages:2104-16 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2315814  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 10  |b 29  |c 10  |h 2104-16