Mixture of Subspaces Image Representation and Compact Coding for Large-Scale Image Retrieval

There are two major approaches to content-based image retrieval using local image descriptors. One is descriptor-by-descriptor matching and the other is based on comparison of global image representation that describes the set of local descriptors of each image. In large-scale problems, the latter i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 7 vom: 14. Juli, Seite 1469-79
1. Verfasser: Takahashi, Takashi (VerfasserIn)
Weitere Verfasser: Kurita, Takio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM252583515
003 DE-627
005 20231224164423.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2382092  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252583515 
035 |a (NLM)26352453 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Takahashi, Takashi  |e verfasserin  |4 aut 
245 1 0 |a Mixture of Subspaces Image Representation and Compact Coding for Large-Scale Image Retrieval 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a There are two major approaches to content-based image retrieval using local image descriptors. One is descriptor-by-descriptor matching and the other is based on comparison of global image representation that describes the set of local descriptors of each image. In large-scale problems, the latter is preferred due to its smaller memory requirements; however, it tends to be inferior to the former in terms of retrieval accuracy. To achieve both low memory cost and high accuracy, we investigate an asymmetric approach in which the probability distribution of local descriptors is modeled for each individual database image while the local descriptors of a query are used as is. We adopt a mixture model of probabilistic principal component analysis. The model parameters constitute a global image representation to be stored in database. Then the likelihood function is employed to compute a matching score between each database image and a query. We also propose an algorithm to encode our image representation into more compact codes. Experimental results demonstrate that our method can represent each database image in less than several hundred bytes achieving higher retrieval accuracy than the state-of-the-art method using Fisher vectors 
650 4 |a Journal Article 
700 1 |a Kurita, Takio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 7 vom: 14. Juli, Seite 1469-79  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:7  |g day:14  |g month:07  |g pages:1469-79 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2382092  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 7  |b 14  |c 07  |h 1469-79