Efficient Energy Minimization for Enforcing Label Statistics

Energy minimization algorithms, such as graph cuts, enable the computation of the MAP solution under certain probabilistic models such as Markov random fields. However, for many computer vision problems, the MAP solution under the model is not the ground truth solution. In many problem scenarios, th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 9 vom: 02. Sept., Seite 1893-9
1. Verfasser: Lim, Yongsub (VerfasserIn)
Weitere Verfasser: Jung, Kyomin, Kohli, Pushmeet
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM252581555
003 DE-627
005 20250219030200.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2306415  |2 doi 
028 5 2 |a pubmed25n0841.xml 
035 |a (DE-627)NLM252581555 
035 |a (NLM)26352240 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lim, Yongsub  |e verfasserin  |4 aut 
245 1 0 |a Efficient Energy Minimization for Enforcing Label Statistics 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Energy minimization algorithms, such as graph cuts, enable the computation of the MAP solution under certain probabilistic models such as Markov random fields. However, for many computer vision problems, the MAP solution under the model is not the ground truth solution. In many problem scenarios, the system has access to certain statistics of the ground truth. For instance, in image segmentation, the area and boundary length of the object may be known. In these cases, we want to estimate the most probable solution that is consistent with such statistics, i.e., satisfies certain equality or inequality constraints. The above constrained energy minimization problem is NP-hard in general, and is usually solved using Linear Programming formulations, which relax the integrality constraints. This paper proposes a novel method that directly finds the discrete approximate solution of such problems by maximizing the corresponding Lagrangian dual. This method can be applied to any constrained energy minimization problem whose unconstrained version is polynomial time solvable, and can handle multiple, equality or inequality, and linear or non-linear constraints. One important advantage of our method is the ability to handle second order constraints with both-side inequalities with a weak restriction, not trivial in the relaxation based methods, and show that the restriction does not affect the accuracy in our cases.We demonstrate the efficacy of our method on the foreground/background image segmentation problem, and show that it produces impressive segmentation results with less error, and runs more than 20 times faster than the state-of-the-art LP relaxation based approaches 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Jung, Kyomin  |e verfasserin  |4 aut 
700 1 |a Kohli, Pushmeet  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 9 vom: 02. Sept., Seite 1893-9  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:9  |g day:02  |g month:09  |g pages:1893-9 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2306415  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 9  |b 02  |c 09  |h 1893-9