The Spike-and-Slab RBM and Extensions to Discrete and Sparse Data Distributions

The spike-and-slab restricted Boltzmann machine (ssRBM) is defined to have both a real-valued "slab" variable and a binary "spike" variable associated with each unit in the hidden layer. The model uses its slab variables to model the conditional covariance of the observation-thou...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 9 vom: 02. Sept., Seite 1874-87
1. Verfasser: Courville, Aaron (VerfasserIn)
Weitere Verfasser: Desjardins, Guillaume, Bergstra, James, Bengio, Yoshua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM252581539
003 DE-627
005 20231224164420.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2013.238  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252581539 
035 |a (NLM)26352238 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Courville, Aaron  |e verfasserin  |4 aut 
245 1 4 |a The Spike-and-Slab RBM and Extensions to Discrete and Sparse Data Distributions 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.11.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The spike-and-slab restricted Boltzmann machine (ssRBM) is defined to have both a real-valued "slab" variable and a binary "spike" variable associated with each unit in the hidden layer. The model uses its slab variables to model the conditional covariance of the observation-thought to be important in capturing the statistical properties of natural images. In this paper, we present the canonical ssRBM framework together with some extensions. These extensions highlight the flexibility of the spike-and-slab RBM as a platform for exploring more sophisticated probabilistic models of high dimensional data in general and natural image data in particular. Here, we introduce the subspace-ssRBM focused on the task of learning invariant features. We highlight the behaviour of the ssRBM and its extensions through experiments with the MNIST digit recognition task and the CIFAR-10 object classification task 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Desjardins, Guillaume  |e verfasserin  |4 aut 
700 1 |a Bergstra, James  |e verfasserin  |4 aut 
700 1 |a Bengio, Yoshua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 9 vom: 02. Sept., Seite 1874-87  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:9  |g day:02  |g month:09  |g pages:1874-87 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2013.238  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 9  |b 02  |c 09  |h 1874-87