The Hidden Sides of Names--Face Modeling with First Name Attributes

This paper introduces the new idea of describing people using first names. We show that describing people in terms of similarity to a vector of possible first names is a powerful representation of facial appearance that can be used for a number of important applications, such as naming never-seen fa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 36(2014), 9 vom: 02. Sept., Seite 1860-73
1. Verfasser: Chen, Huizhong (VerfasserIn)
Weitere Verfasser: Gallagher, Andrew C, Girod, Bernd
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM252581520
003 DE-627
005 20231224164420.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2014.2302443  |2 doi 
028 5 2 |a pubmed24n0842.xml 
035 |a (DE-627)NLM252581520 
035 |a (NLM)26352237 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Huizhong  |e verfasserin  |4 aut 
245 1 4 |a The Hidden Sides of Names--Face Modeling with First Name Attributes 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.03.2016 
500 |a Date Revised 10.09.2015 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper introduces the new idea of describing people using first names. We show that describing people in terms of similarity to a vector of possible first names is a powerful representation of facial appearance that can be used for a number of important applications, such as naming never-seen faces and building facial attribute classifiers. We build models for 100 common first names used in the US and for each pair, construct a pairwise first-name classifier. These classifiers are built using training images downloaded from the internet, with no additional user interaction. This gives our approach important advantages in building practical systems that do not require additional human intervention for data labeling. The classification scores from each pairwise name classifier can be used as a set of facial attributes to describe facial appearance. We show several surprising results. Our name attributes predict the correct first names of test faces at rates far greater than chance. The name attributes are applied to gender recognition and to age classification, outperforming state-of-the-art methods with all training images automatically gathered from the internet. We also demonstrate the powerful use of our name attributes for associating faces in images with names from caption, and the important application of unconstrained face verification 
650 4 |a Journal Article 
700 1 |a Gallagher, Andrew C  |e verfasserin  |4 aut 
700 1 |a Girod, Bernd  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 36(2014), 9 vom: 02. Sept., Seite 1860-73  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:36  |g year:2014  |g number:9  |g day:02  |g month:09  |g pages:1860-73 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2014.2302443  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2014  |e 9  |b 02  |c 09  |h 1860-73