Multi-Camera Saliency

A significant body of literature on saliency modeling predicts where humans look in a single image or video. Besides the scientific goal of understanding how information is fused from multiple visual sources to identify regions of interest in a holistic manner, there are tremendous engineering appli...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 10 vom: 06. Okt., Seite 2057-70
1. Verfasser: Luo, Yan (VerfasserIn)
Weitere Verfasser: Jiang, Ming, Wong, Yongkang, Zhao, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM252464168
003 DE-627
005 20250219023131.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2392783  |2 doi 
028 5 2 |a pubmed25n0841.xml 
035 |a (DE-627)NLM252464168 
035 |a (NLM)26340257 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Luo, Yan  |e verfasserin  |4 aut 
245 1 0 |a Multi-Camera Saliency 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.05.2016 
500 |a Date Revised 05.09.2015 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A significant body of literature on saliency modeling predicts where humans look in a single image or video. Besides the scientific goal of understanding how information is fused from multiple visual sources to identify regions of interest in a holistic manner, there are tremendous engineering applications of multi-camera saliency due to the widespread of cameras. This paper proposes a principled framework to smoothly integrate visual information from multiple views to a global scene map, and to employ a saliency algorithm incorporating high-level features to identify the most important regions by fusing visual information. The proposed method has the following key distinguishing features compared with its counterparts: (1) the proposed saliency detection is global (salient regions from one local view may not be important in a global context), (2) it does not require special ways for camera deployment or overlapping field of view, and (3) the key saliency algorithm is effective in highlighting interesting object regions though not a single detector is used. Experiments on several data sets confirm the effectiveness of the proposed principled framework 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Jiang, Ming  |e verfasserin  |4 aut 
700 1 |a Wong, Yongkang  |e verfasserin  |4 aut 
700 1 |a Zhao, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 10 vom: 06. Okt., Seite 2057-70  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:10  |g day:06  |g month:10  |g pages:2057-70 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2392783  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 10  |b 06  |c 10  |h 2057-70