Generative Graph Prototypes from Information Theory

In this paper we present a method for constructing a generative prototype for a set of graphs by adopting a minimum description length approach. The method is posed in terms of learning a generative supergraph model from which the new samples can be obtained by an appropriate sampling mechanism. We...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 37(2015), 10 vom: 06. Okt., Seite 2013-27
1. Verfasser: Han, Lin (VerfasserIn)
Weitere Verfasser: Wilson, Richard C, Hancock, Edwin R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM252464125
003 DE-627
005 20231224164153.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2400451  |2 doi 
028 5 2 |a pubmed24n0841.xml 
035 |a (DE-627)NLM252464125 
035 |a (NLM)26340255 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Lin  |e verfasserin  |4 aut 
245 1 0 |a Generative Graph Prototypes from Information Theory 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.11.2015 
500 |a Date Revised 05.09.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper we present a method for constructing a generative prototype for a set of graphs by adopting a minimum description length approach. The method is posed in terms of learning a generative supergraph model from which the new samples can be obtained by an appropriate sampling mechanism. We commence by constructing a probability distribution for the occurrence of nodes and edges over the supergraph. We encode the complexity of the supergraph using an approximate Von Neumann entropy. A variant of the EM algorithm is developed to minimize the description length criterion in which the structure of the supergraph and the node correspondences between the sample graphs and the supergraph are treated as missing data. To generate new graphs, we assume that the nodes and edges of graphs arise under independent Bernoulli distributions and sample new graphs according to their node and edge occurrence probabilities. Empirical evaluations on real-world databases demonstrate the practical utility of the proposed algorithm and show the effectiveness of the generative model for the tasks of graph classification, graph clustering and generating new sample graphs 
650 4 |a Journal Article 
700 1 |a Wilson, Richard C  |e verfasserin  |4 aut 
700 1 |a Hancock, Edwin R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 37(2015), 10 vom: 06. Okt., Seite 2013-27  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:37  |g year:2015  |g number:10  |g day:06  |g month:10  |g pages:2013-27 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2400451  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2015  |e 10  |b 06  |c 10  |h 2013-27