Rayleigh-Rice Mixture Parameter Estimation via EM Algorithm for Change Detection in Multispectral Images

The problem of estimating the parameters of a Rayleigh-Rice mixture density is often encountered in image analysis (e.g., remote sensing and medical image processing). In this paper, we address this general problem in the framework of change detection (CD) in multitemporal and multispectral images....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 12 vom: 23. Dez., Seite 5004-16
1. Verfasser: Zanetti, Massimo (VerfasserIn)
Weitere Verfasser: Bovolo, Francesca, Bruzzone, Lorenzo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM252424751
003 DE-627
005 20250219022133.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2474710  |2 doi 
028 5 2 |a pubmed25n0841.xml 
035 |a (DE-627)NLM252424751 
035 |a (NLM)26336124 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zanetti, Massimo  |e verfasserin  |4 aut 
245 1 0 |a Rayleigh-Rice Mixture Parameter Estimation via EM Algorithm for Change Detection in Multispectral Images 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.02.2016 
500 |a Date Revised 29.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The problem of estimating the parameters of a Rayleigh-Rice mixture density is often encountered in image analysis (e.g., remote sensing and medical image processing). In this paper, we address this general problem in the framework of change detection (CD) in multitemporal and multispectral images. One widely used approach to CD in multispectral images is based on the change vector analysis. Here, the distribution of the magnitude of the difference image can be theoretically modeled by a Rayleigh-Rice mixture density. However, given the complexity of this model, in applications, a Gaussian-mixture approximation is often considered, which may affect the CD results. In this paper, we present a novel technique for parameter estimation of the Rayleigh-Rice density that is based on a specific definition of the expectation-maximization algorithm. The proposed technique, which is characterized by good theoretical properties, iteratively updates the parameters and does not depend on specific optimization routines. Several numerical experiments on synthetic data demonstrate the effectiveness of the method, which is general and can be applied to any image processing problem involving the Rayleigh-Rice mixture density. In the CD context, the Rayleigh-Rice model (which is theoretically derived) outperforms other empirical models. Experiments on real multitemporal and multispectral remote sensing images confirm the validity of the model by returning significantly higher CD accuracies than those obtained by using the state-of-the-art approaches 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bovolo, Francesca  |e verfasserin  |4 aut 
700 1 |a Bruzzone, Lorenzo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 12 vom: 23. Dez., Seite 5004-16  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:12  |g day:23  |g month:12  |g pages:5004-16 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2474710  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 12  |b 23  |c 12  |h 5004-16