The STOne Transform : Multi-Resolution Image Enhancement and Compressive Video

Compressive sensing enables the reconstruction of high-resolution signals from under-sampled data. While the compressive methods simplify data acquisition, they require the solution of difficult recovery problems to make use of the resulting measurements. This paper presents a new sensing framework...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 12 vom: 23. Dez., Seite 5581-93
1. Verfasser: Goldstein, Tom (VerfasserIn)
Weitere Verfasser: Xu, Lina, Kelly, Kevin F, Baraniuk, Richard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM252424743
003 DE-627
005 20231224164104.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2474697  |2 doi 
028 5 2 |a pubmed24n0841.xml 
035 |a (DE-627)NLM252424743 
035 |a (NLM)26336123 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Goldstein, Tom  |e verfasserin  |4 aut 
245 1 4 |a The STOne Transform  |b Multi-Resolution Image Enhancement and Compressive Video 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.02.2016 
500 |a Date Revised 27.01.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Compressive sensing enables the reconstruction of high-resolution signals from under-sampled data. While the compressive methods simplify data acquisition, they require the solution of difficult recovery problems to make use of the resulting measurements. This paper presents a new sensing framework that combines the advantages of both the conventional and the compressive sensing. Using the proposed sum-to-one transform, the measurements can be reconstructed instantly at the Nyquist rates at any power-of-two resolution. The same data can then be enhanced to higher resolutions using the compressive methods that leverage sparsity to beat the Nyquist limit. The availability of a fast direct reconstruction enables the compressive measurements to be processed on small embedded devices. We demonstrate this by constructing a real-time compressive video camera 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Xu, Lina  |e verfasserin  |4 aut 
700 1 |a Kelly, Kevin F  |e verfasserin  |4 aut 
700 1 |a Baraniuk, Richard  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 12 vom: 23. Dez., Seite 5581-93  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:12  |g day:23  |g month:12  |g pages:5581-93 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2474697  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 12  |b 23  |c 12  |h 5581-93