Exploiting Surroundedness for Saliency Detection : A Boolean Map Approach

We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 38(2016), 5 vom: 23. Mai, Seite 889-902
1. Verfasser: Zhang, Jianming (VerfasserIn)
Weitere Verfasser: Sclaroff, Stan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM252424654
003 DE-627
005 20231224164104.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2015.2473844  |2 doi 
028 5 2 |a pubmed24n0841.xml 
035 |a (DE-627)NLM252424654 
035 |a (NLM)26336114 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Jianming  |e verfasserin  |4 aut 
245 1 0 |a Exploiting Surroundedness for Saliency Detection  |b A Boolean Map Approach 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.08.2016 
500 |a Date Revised 06.04.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Sclaroff, Stan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 38(2016), 5 vom: 23. Mai, Seite 889-902  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:38  |g year:2016  |g number:5  |g day:23  |g month:05  |g pages:889-902 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2015.2473844  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2016  |e 5  |b 23  |c 05  |h 889-902