Dual Graph Regularized Latent Low-Rank Representation for Subspace Clustering

Low-rank representation (LRR) has received considerable attention in subspace segmentation due to its effectiveness in exploring low-dimensional subspace structures embedded in data. To preserve the intrinsic geometrical structure of data, a graph regularizer has been introduced into LRR framework f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 12 vom: 26. Dez., Seite 4918-33
1. Verfasser: Yin, Ming (VerfasserIn)
Weitere Verfasser: Gao, Junbin, Lin, Zhouchen, Shi, Qinfeng, Guo, Yi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Low-rank representation (LRR) has received considerable attention in subspace segmentation due to its effectiveness in exploring low-dimensional subspace structures embedded in data. To preserve the intrinsic geometrical structure of data, a graph regularizer has been introduced into LRR framework for learning the locality and similarity information within data. However, it is often the case that not only the high-dimensional data reside on a non-linear low-dimensional manifold in the ambient space, but also their features lie on a manifold in feature space. In this paper, we propose a dual graph regularized LRR model (DGLRR) by enforcing preservation of geometric information in both the ambient space and the feature space. The proposed method aims for simultaneously considering the geometric structures of the data manifold and the feature manifold. Furthermore, we extend the DGLRR model to include non-negative constraint, leading to a parts-based representation of data. Experiments are conducted on several image data sets to demonstrate that the proposed method outperforms the state-of-the-art approaches in image clustering
Beschreibung:Date Completed 03.02.2016
Date Revised 29.09.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2015.2472277