A Note on Evaluation of Temporal Derivative of Hypersingular Integrals over Open Surface with Propagating Contour

The short note concerns with elasticity problems involving singular and hypersingular integrals over open surfaces, specifically cracks, with the contour propagating in time. Noting that near a smooth part of a propagating contour the state is asymptotically plane, we focus on 1D hypersingular integ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal Of Elasticity. - 1998. - 120(2015), 1 vom: 01., Seite 121-128
1. Verfasser: Jaworski, Dawid (VerfasserIn)
Weitere Verfasser: Linkov, Aleksandr, Rybarska-Rusinek, Liliana
Format: Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal Of Elasticity
Schlagworte:Journal Article Differentiation with respect to parameter Hypersingular integrals Propagating crack
LEADER 01000caa a22002652 4500
001 NLM252204875
003 DE-627
005 20250219012645.0
007 tu
008 231224s2015 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0840.xml 
035 |a (DE-627)NLM252204875 
035 |a (NLM)26311918 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jaworski, Dawid  |e verfasserin  |4 aut 
245 1 2 |a A Note on Evaluation of Temporal Derivative of Hypersingular Integrals over Open Surface with Propagating Contour 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The short note concerns with elasticity problems involving singular and hypersingular integrals over open surfaces, specifically cracks, with the contour propagating in time. Noting that near a smooth part of a propagating contour the state is asymptotically plane, we focus on 1D hypersingular integrals and employ complex variables. By using the theory of complex variable singular and hypersingular integrals, we show that the rule for evaluation of the temporal derivative is the same as that for proper integrals. Being applied to crack problems the rule implies that the temporal derivative may be evaluated by differentiation under the integral sign 
650 4 |a Journal Article 
650 4 |a Differentiation with respect to parameter 
650 4 |a Hypersingular integrals 
650 4 |a Propagating crack 
700 1 |a Linkov, Aleksandr  |e verfasserin  |4 aut 
700 1 |a Rybarska-Rusinek, Liliana  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal Of Elasticity  |d 1998  |g 120(2015), 1 vom: 01., Seite 121-128  |w (DE-627)NLM098156470  |x 0374-3535  |7 nnns 
773 1 8 |g volume:120  |g year:2015  |g number:1  |g day:01  |g pages:121-128 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 120  |j 2015  |e 1  |b 01  |h 121-128