Image Outlier Detection and Feature Extraction via L1-Norm-Based 2D Probabilistic PCA

This paper introduces an L1-norm-based probabilistic principal component analysis model on 2D data (L1-2DPPCA) based on the assumption of the Laplacian noise model. The Laplacian or L1 density function can be expressed as a superposition of an infinite number of Gaussian distributions. Under this ex...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 12 vom: 20. Dez., Seite 4834-46
1. Verfasser: Ju, Fujiao (VerfasserIn)
Weitere Verfasser: Sun, Yanfeng, Gao, Junbin, Hu, Yongli, Yin, Baocai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't