Image Outlier Detection and Feature Extraction via L1-Norm-Based 2D Probabilistic PCA
This paper introduces an L1-norm-based probabilistic principal component analysis model on 2D data (L1-2DPPCA) based on the assumption of the Laplacian noise model. The Laplacian or L1 density function can be expressed as a superposition of an infinite number of Gaussian distributions. Under this ex...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 12 vom: 20. Dez., Seite 4834-46
|
1. Verfasser: |
Ju, Fujiao
(VerfasserIn) |
Weitere Verfasser: |
Sun, Yanfeng,
Gao, Junbin,
Hu, Yongli,
Yin, Baocai |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
Schlagworte: | Journal Article
Research Support, Non-U.S. Gov't |