|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM251947734 |
003 |
DE-627 |
005 |
20231224163103.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2015 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2015.2468172
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0839.xml
|
035 |
|
|
|a (DE-627)NLM251947734
|
035 |
|
|
|a (NLM)26285148
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zeng, Xianhua
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Dictionary Pair Learning on Grassmann Manifolds for Image Denoising
|
264 |
|
1 |
|c 2015
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 16.09.2015
|
500 |
|
|
|a Date Revised 10.09.2015
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Image denoising is a fundamental problem in computer vision and image processing that holds considerable practical importance for real-world applications. The traditional patch-based and sparse coding-driven image denoising methods convert 2D image patches into 1D vectors for further processing. Thus, these methods inevitably break down the inherent 2D geometric structure of natural images. To overcome this limitation pertaining to the previous image denoising methods, we propose a 2D image denoising model, namely, the dictionary pair learning (DPL) model, and we design a corresponding algorithm called the DPL on the Grassmann-manifold (DPLG) algorithm. The DPLG algorithm first learns an initial dictionary pair (i.e., the left and right dictionaries) by employing a subspace partition technique on the Grassmann manifold, wherein the refined dictionary pair is obtained through a sub-dictionary pair merging. The DPLG obtains a sparse representation by encoding each image patch only with the selected sub-dictionary pair. The non-zero elements of the sparse representation are further smoothed by the graph Laplacian operator to remove the noise. Consequently, the DPLG algorithm not only preserves the inherent 2D geometric structure of natural images but also performs manifold smoothing in the 2D sparse coding space. We demonstrate that the DPLG algorithm also improves the structural SIMilarity values of the perceptual visual quality for denoised images using the experimental evaluations on the benchmark images and Berkeley segmentation data sets. Moreover, the DPLG also produces the competitive peak signal-to-noise ratio values from popular image denoising algorithms
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Bian, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shen, Jialie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tao, Dacheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 24(2015), 11 vom: 18. Nov., Seite 4556-69
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:24
|g year:2015
|g number:11
|g day:18
|g month:11
|g pages:4556-69
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2015.2468172
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 24
|j 2015
|e 11
|b 18
|c 11
|h 4556-69
|