Unsupervised Joint Feature Learning and Encoding for RGB-D Scene Labeling

Most existing approaches for RGB-D indoor scene labeling employ hand-crafted features for each modality independently and combine them in a heuristic manner. There has been some attempt on directly learning features from raw RGB-D data, but the performance is not satisfactory. In this paper, we prop...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 11 vom: 15. Nov., Seite 4459-73
1. Verfasser: Wang, Anran (VerfasserIn)
Weitere Verfasser: Lu, Jiwen, Cai, Jianfei, Wang, Gang, Cham, Tat-Jen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM251867994
003 DE-627
005 20231224162923.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2465133  |2 doi 
028 5 2 |a pubmed24n0839.xml 
035 |a (DE-627)NLM251867994 
035 |a (NLM)26276987 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Anran  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Joint Feature Learning and Encoding for RGB-D Scene Labeling 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Most existing approaches for RGB-D indoor scene labeling employ hand-crafted features for each modality independently and combine them in a heuristic manner. There has been some attempt on directly learning features from raw RGB-D data, but the performance is not satisfactory. In this paper, we propose an unsupervised joint feature learning and encoding (JFLE) framework for RGB-D scene labeling. The main novelty of our learning framework lies in the joint optimization of feature learning and feature encoding in a coherent way, which significantly boosts the performance. By stacking basic learning structure, higher level features are derived and combined with lower level features for better representing RGB-D data. Moreover, to explore the nonlinear intrinsic characteristic of data, we further propose a more general joint deep feature learning and encoding (JDFLE) framework that introduces the nonlinear mapping into JFLE. The experimental results on the benchmark NYU depth dataset show that our approaches achieve competitive performance, compared with the state-of-the-art methods, while our methods do not need complex feature handcrafting and feature combination and can be easily applied to other data sets 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lu, Jiwen  |e verfasserin  |4 aut 
700 1 |a Cai, Jianfei  |e verfasserin  |4 aut 
700 1 |a Wang, Gang  |e verfasserin  |4 aut 
700 1 |a Cham, Tat-Jen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 11 vom: 15. Nov., Seite 4459-73  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:11  |g day:15  |g month:11  |g pages:4459-73 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2465133  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 11  |b 15  |c 11  |h 4459-73