An estimate of the second-order in-plane acceleration sensitivity of a Y-cut quartz thickness-shear resonator
We perform a theoretical analysis of the secondorder in-plane acceleration sensitivity of a Y-cut quartz thickness- shear mode resonator. The second-order nonlinear theory of elasticity for anisotropic crystals is used to determine the biasing fields in the resonator under in-plane acceleration. The...
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 62(2015), 8 vom: 16. Aug., Seite 1421-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
Schlagworte: | Journal Article |
Zusammenfassung: | We perform a theoretical analysis of the secondorder in-plane acceleration sensitivity of a Y-cut quartz thickness- shear mode resonator. The second-order nonlinear theory of elasticity for anisotropic crystals is used to determine the biasing fields in the resonator under in-plane acceleration. The acceleration-induced frequency shift is determined from a perturbation analysis based on the plate equations for small-amplitude vibrations superposed on a finite bias. We show that, whereas the first-order acceleration-induced frequency shift is zero for a structurally symmetric resonator under in-plane acceleration, the second-order frequency shift is nonzero and is quadratic in the acceleration. As the fourth-order nonlinear elastic constants of quartz have never been measured, we can only estimate the magnitude of the second-order frequency shift. For a particular case of interest, we find Δω/ω0 ~ 10(-18), 10(-16), and 10(-14) when the acceleration is 1, 10, and 100 g, respectively |
---|---|
Beschreibung: | Date Completed 23.10.2015 Date Revised 16.08.2015 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1525-8955 |
DOI: | 10.1109/TUFFC.2015.007033 |