An estimate of the second-order in-plane acceleration sensitivity of a Y-cut quartz thickness-shear resonator

We perform a theoretical analysis of the secondorder in-plane acceleration sensitivity of a Y-cut quartz thickness- shear mode resonator. The second-order nonlinear theory of elasticity for anisotropic crystals is used to determine the biasing fields in the resonator under in-plane acceleration. The...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 62(2015), 8 vom: 16. Aug., Seite 1421-8
1. Verfasser: He, Huijing (VerfasserIn)
Weitere Verfasser: Yang, Jiashi, Kosinski, John A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We perform a theoretical analysis of the secondorder in-plane acceleration sensitivity of a Y-cut quartz thickness- shear mode resonator. The second-order nonlinear theory of elasticity for anisotropic crystals is used to determine the biasing fields in the resonator under in-plane acceleration. The acceleration-induced frequency shift is determined from a perturbation analysis based on the plate equations for small-amplitude vibrations superposed on a finite bias. We show that, whereas the first-order acceleration-induced frequency shift is zero for a structurally symmetric resonator under in-plane acceleration, the second-order frequency shift is nonzero and is quadratic in the acceleration. As the fourth-order nonlinear elastic constants of quartz have never been measured, we can only estimate the magnitude of the second-order frequency shift. For a particular case of interest, we find Δω/ω0 ~ 10(-18), 10(-16), and 10(-14) when the acceleration is 1, 10, and 100 g, respectively
Beschreibung:Date Completed 23.10.2015
Date Revised 16.08.2015
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1525-8955
DOI:10.1109/TUFFC.2015.007033