A General Exponential Framework for Dimensionality Reduction

As a general framework, Laplacian embedding, based on a pairwise similarity matrix, infers low dimensional representations from high dimensional data. However, it generally suffers from three issues: 1) algorithmic performance is sensitive to the size of neighbors; 2) the algorithm encounters the we...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 2 vom: 07. Feb., Seite 920-30
1. Verfasser: Wang, Su-Jing (VerfasserIn)
Weitere Verfasser: Yan, Shuicheng, Yang, Jian, Zhou, Chun-Guang, Fu, Xiaolan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM251809234
003 DE-627
005 20231224162811.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2297020  |2 doi 
028 5 2 |a pubmed24n0839.xml 
035 |a (DE-627)NLM251809234 
035 |a (NLM)26270928 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Su-Jing  |e verfasserin  |4 aut 
245 1 2 |a A General Exponential Framework for Dimensionality Reduction 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.10.2015 
500 |a Date Revised 14.08.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a As a general framework, Laplacian embedding, based on a pairwise similarity matrix, infers low dimensional representations from high dimensional data. However, it generally suffers from three issues: 1) algorithmic performance is sensitive to the size of neighbors; 2) the algorithm encounters the well known small sample size (SSS) problem; and 3) the algorithm de-emphasizes small distance pairs. To address these issues, here we propose exponential embedding using matrix exponential and provide a general framework for dimensionality reduction. In the framework, the matrix exponential can be roughly interpreted by the random walk over the feature similarity matrix, and thus is more robust. The positive definite property of matrix exponential deals with the SSS problem. The behavior of the decay function of exponential embedding is more significant in emphasizing small distance pairs. Under this framework, we apply matrix exponential to extend many popular Laplacian embedding algorithms, e.g., locality preserving projections, unsupervised discriminant projections, and marginal fisher analysis. Experiments conducted on the synthesized data, UCI, and the Georgia Tech face database show that the proposed new framework can well address the issues mentioned above 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yan, Shuicheng  |e verfasserin  |4 aut 
700 1 |a Yang, Jian  |e verfasserin  |4 aut 
700 1 |a Zhou, Chun-Guang  |e verfasserin  |4 aut 
700 1 |a Fu, Xiaolan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 2 vom: 07. Feb., Seite 920-30  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:2  |g day:07  |g month:02  |g pages:920-30 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2297020  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 2  |b 07  |c 02  |h 920-30