Rotation-Covariant Texture Learning Using Steerable Riesz Wavelets
We propose a texture learning approach that exploits local organizations of scales and directions. First, linear combinations of Riesz wavelets are learned using kernel support vector machines. The resulting texture signatures are modeling optimal class-wise discriminatory properties. The visualizat...
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 2 vom: 07. Feb., Seite 898-908 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2014
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Sujets: | Journal Article Research Support, Non-U.S. Gov't |
Accès en ligne |
Volltext |