Enhanced Decoupled Active Contour Using Structural and Textural Variation Energy Functionals

Active contours are a popular approach for object segmentation that uses an energy minimizing spline to extract an object's boundary. Nonparametric approaches can be computationally complex, whereas parametric approaches can be impacted by parameter sensitivity. A decoupled active contour (DAC)...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 2 vom: 07. Feb., Seite 855-69
1. Verfasser: Lui, Dorothy (VerfasserIn)
Weitere Verfasser: Scharfenberger, Christian, Fergani, Khalil, Wong, Alexander, Clausi, David A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM251809196
003 DE-627
005 20231224162811.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2295752  |2 doi 
028 5 2 |a pubmed24n0839.xml 
035 |a (DE-627)NLM251809196 
035 |a (NLM)26270923 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lui, Dorothy  |e verfasserin  |4 aut 
245 1 0 |a Enhanced Decoupled Active Contour Using Structural and Textural Variation Energy Functionals 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.10.2015 
500 |a Date Revised 14.08.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Active contours are a popular approach for object segmentation that uses an energy minimizing spline to extract an object's boundary. Nonparametric approaches can be computationally complex, whereas parametric approaches can be impacted by parameter sensitivity. A decoupled active contour (DAC) overcomes these problems by decoupling the external and internal energies and optimizing them separately. However a drawback of this approach is its reliance on the edge gradient as the external energy. This can lead to poor convergence toward the object boundary in the presence of weak object and strong background edges. To overcome these issues with convergence, a novel approach is proposed that takes advantage of a sparse texture model, which explicitly considers texture for boundary detection. The approach then defines the external energy as a weighted combination of textural and structural variation maps and feeds it into a multifunctional hidden Markov model for more robust object boundary detection. The enhanced DAC (EDAC) is qualitatively and visually analyzed on two natural image data sets as well as Brodatz images. The results demonstrate that EDAC effectively combines texture and structural information to extract the object boundary without impact on computation time and a reliance on color 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Scharfenberger, Christian  |e verfasserin  |4 aut 
700 1 |a Fergani, Khalil  |e verfasserin  |4 aut 
700 1 |a Wong, Alexander  |e verfasserin  |4 aut 
700 1 |a Clausi, David A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 2 vom: 07. Feb., Seite 855-69  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:2  |g day:07  |g month:02  |g pages:855-69 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2295752  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 2  |b 07  |c 02  |h 855-69