Scaled Heavy-Ball Acceleration of the Richardson-Lucy Algorithm for 3D Microscopy Image Restoration

The Richardson-Lucy algorithm is one of the most important in image deconvolution. However, a drawback is its slow convergence. A significant acceleration was obtained using the technique proposed by Biggs and Andrews (BA), which is implemented in the deconvlucy function of the image processing MATL...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 2 vom: 07. Feb., Seite 848-54
1. Verfasser: Wang, Hongbin (VerfasserIn)
Weitere Verfasser: Miller, Paul C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM25180917X
003 DE-627
005 20231224162811.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2291324  |2 doi 
028 5 2 |a pubmed24n0839.xml 
035 |a (DE-627)NLM25180917X 
035 |a (NLM)26270922 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Hongbin  |e verfasserin  |4 aut 
245 1 0 |a Scaled Heavy-Ball Acceleration of the Richardson-Lucy Algorithm for 3D Microscopy Image Restoration 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.10.2015 
500 |a Date Revised 14.08.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The Richardson-Lucy algorithm is one of the most important in image deconvolution. However, a drawback is its slow convergence. A significant acceleration was obtained using the technique proposed by Biggs and Andrews (BA), which is implemented in the deconvlucy function of the image processing MATLAB toolbox. The BA method was developed heuristically with no proof of convergence. In this paper, we introduce the heavy-ball (H-B) method for Poisson data optimization and extend it to a scaled H-B method, which includes the BA method as a special case. The method has a proof of the convergence rate of O(K(-2)), where k is the number of iterations. We demonstrate the superior convergence performance, by a speedup factor of five, of the scaled H-B method on both synthetic and real 3D images 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Miller, Paul C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 2 vom: 07. Feb., Seite 848-54  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:2  |g day:07  |g month:02  |g pages:848-54 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2291324  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 2  |b 07  |c 02  |h 848-54