|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM251809056 |
003 |
DE-627 |
005 |
20231224162811.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2013.2291319
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0839.xml
|
035 |
|
|
|a (DE-627)NLM251809056
|
035 |
|
|
|a (NLM)26270910
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yuan, Chunfeng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Modeling Geometric-Temporal Context With Directional Pyramid Co-Occurrence for Action Recognition
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 22.10.2015
|
500 |
|
|
|a Date Revised 14.08.2015
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a In this paper, we present a new geometric-temporal representation for visual action recognition based on local spatio-temporal features. First, we propose a modified covariance descriptor under the log-Euclidean Riemannian metric to represent the spatio-temporal cuboids detected in the video sequences. Compared with previously proposed covariance descriptors, our descriptor can be measured and clustered in Euclidian space. Second, to capture the geometric-temporal contextual information, we construct a directional pyramid co-occurrence matrix (DPCM) to describe the spatio-temporal distribution of the vector-quantized local feature descriptors extracted from a video. DPCM characterizes the co-occurrence statistics of local features as well as the spatio-temporal positional relationships among the concurrent features. These statistics provide strong descriptive power for action recognition. To use DPCM for action recognition, we propose a directional pyramid co-occurrence matching kernel to measure the similarity of videos. The proposed method achieves the state-of-the-art performance and improves on the recognition performance of the bag-of-visual-words (BOVWs) models by a large margin on six public data sets. For example, on the KTH data set, it achieves 98.78% accuracy while the BOVW approach only achieves 88.06%. On both Weizmann and UCF CIL data sets, the highest possible accuracy of 100% is achieved
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Li, Xi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Weiming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ling, Haibin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Maybank, Stephen J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 23(2014), 2 vom: 07. Feb., Seite 658-72
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:23
|g year:2014
|g number:2
|g day:07
|g month:02
|g pages:658-72
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2013.2291319
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 23
|j 2014
|e 2
|b 07
|c 02
|h 658-72
|