Modeling Geometric-Temporal Context With Directional Pyramid Co-Occurrence for Action Recognition

In this paper, we present a new geometric-temporal representation for visual action recognition based on local spatio-temporal features. First, we propose a modified covariance descriptor under the log-Euclidean Riemannian metric to represent the spatio-temporal cuboids detected in the video sequenc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 2 vom: 07. Feb., Seite 658-72
1. Verfasser: Yuan, Chunfeng (VerfasserIn)
Weitere Verfasser: Li, Xi, Hu, Weiming, Ling, Haibin, Maybank, Stephen J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM251809056
003 DE-627
005 20231224162811.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2013.2291319  |2 doi 
028 5 2 |a pubmed24n0839.xml 
035 |a (DE-627)NLM251809056 
035 |a (NLM)26270910 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Chunfeng  |e verfasserin  |4 aut 
245 1 0 |a Modeling Geometric-Temporal Context With Directional Pyramid Co-Occurrence for Action Recognition 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.10.2015 
500 |a Date Revised 14.08.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present a new geometric-temporal representation for visual action recognition based on local spatio-temporal features. First, we propose a modified covariance descriptor under the log-Euclidean Riemannian metric to represent the spatio-temporal cuboids detected in the video sequences. Compared with previously proposed covariance descriptors, our descriptor can be measured and clustered in Euclidian space. Second, to capture the geometric-temporal contextual information, we construct a directional pyramid co-occurrence matrix (DPCM) to describe the spatio-temporal distribution of the vector-quantized local feature descriptors extracted from a video. DPCM characterizes the co-occurrence statistics of local features as well as the spatio-temporal positional relationships among the concurrent features. These statistics provide strong descriptive power for action recognition. To use DPCM for action recognition, we propose a directional pyramid co-occurrence matching kernel to measure the similarity of videos. The proposed method achieves the state-of-the-art performance and improves on the recognition performance of the bag-of-visual-words (BOVWs) models by a large margin on six public data sets. For example, on the KTH data set, it achieves 98.78% accuracy while the BOVW approach only achieves 88.06%. On both Weizmann and UCF CIL data sets, the highest possible accuracy of 100% is achieved 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Li, Xi  |e verfasserin  |4 aut 
700 1 |a Hu, Weiming  |e verfasserin  |4 aut 
700 1 |a Ling, Haibin  |e verfasserin  |4 aut 
700 1 |a Maybank, Stephen J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 2 vom: 07. Feb., Seite 658-72  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:2  |g day:07  |g month:02  |g pages:658-72 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2013.2291319  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 2  |b 07  |c 02  |h 658-72