Influence of dissolved oxygen concentration on the start-up of the anammox-based process : ELAN®
The anammox-based process ELAN® was started-up in two different sequencing batch reactor (SBR) pilot plant reactors treating municipal anaerobic digester supernatant. The main difference in the operation of both reactors was the dissolved oxygen (DO) concentration in the bulk liquid. SBR-1 was start...
Publié dans: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 72(2015), 4 vom: 26., Seite 520-7 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2015
|
Accès à la collection: | Water science and technology : a journal of the International Association on Water Pollution Research |
Sujets: | Journal Article Research Support, Non-U.S. Gov't Sewage Ammonia 7664-41-7 Nitrogen N762921K75 Oxygen S88TT14065 |
Résumé: | The anammox-based process ELAN® was started-up in two different sequencing batch reactor (SBR) pilot plant reactors treating municipal anaerobic digester supernatant. The main difference in the operation of both reactors was the dissolved oxygen (DO) concentration in the bulk liquid. SBR-1 was started at a DO value of 0.4 mg O2/L whereas SBR-2 was started at DO values of 3.0 mg O2/L. Despite both reactors working at a nitrogen removal rate of around 0.6 g N/(L d), in SBR-1, granules represented only a small fraction of the total biomass and reached a diameter of 1.1 mm after 7 months of operation, while in SBR-2 the biomass was mainly composed of granules with an average diameter of 3.2 mm after the same operational period. Oxygen microelectrode profiling revealed that granules from SBR-2 where only fully penetrated by oxygen with DO concentrations of 8 mg O2/L while granules from SBR-1 were already oxygen penetrated at DO concentrations of 1 mg O2/L. In this way granules from SBR-2 performed better due to the thick layer of ammonia oxidizing bacteria, which accounted for up to 20% of all the microbial populations, which protected the anammox bacteria from non-suitable liquid media conditions |
---|---|
Description: | Date Completed 22.10.2015 Date Revised 02.12.2018 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |
DOI: | 10.2166/wst.2015.233 |