Deblurring Saturated Night Image With Function-Form Kernel

Deblurring saturated night images are a challenging problem because such images have low contrast combined with heavy noise and saturated regions. Unlike the deblurring schemes that discard saturated regions when estimating blur kernels, this paper proposes a novel scheme to deduce blur kernels from...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 11 vom: 11. Nov., Seite 4637-50
1. Verfasser: Liu, Haifeng (VerfasserIn)
Weitere Verfasser: Sun, Xiaoyan, Fang, Lu, Wu, Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM251529681
003 DE-627
005 20250218223814.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2461445  |2 doi 
028 5 2 |a pubmed25n0838.xml 
035 |a (DE-627)NLM251529681 
035 |a (NLM)26241971 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Haifeng  |e verfasserin  |4 aut 
245 1 0 |a Deblurring Saturated Night Image With Function-Form Kernel 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deblurring saturated night images are a challenging problem because such images have low contrast combined with heavy noise and saturated regions. Unlike the deblurring schemes that discard saturated regions when estimating blur kernels, this paper proposes a novel scheme to deduce blur kernels from saturated regions via a novel kernel representation and advanced algorithms. Our key technical contribution is the proposed function-form representation of blur kernels, which regularizes existing matrix-form kernels using three functional components: 1) trajectory; 2) intensity; and 3) expansion. From automatically detected saturated regions, their skeleton, brightness, and width are fitted into the corresponding three functional components of blur kernels. Such regularization significantly improves the quality of kernels deduced from saturated regions. Second, we propose an energy minimizing algorithm to select and assign the deduced function-form kernels to partitioned image regions as the initialization for non-uniform deblurring. Finally, we convert the assigned function-form kernels into matrix form for more detailed estimation in a multi-scale deconvolution. Experimental results show that our scheme outperforms existing schemes on challenging real examples 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Sun, Xiaoyan  |e verfasserin  |4 aut 
700 1 |a Fang, Lu  |e verfasserin  |4 aut 
700 1 |a Wu, Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 11 vom: 11. Nov., Seite 4637-50  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:24  |g year:2015  |g number:11  |g day:11  |g month:11  |g pages:4637-50 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2461445  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 11  |b 11  |c 11  |h 4637-50