Realistic sampling of amino acid geometries for a multipolar polarizable force field

© 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 36(2015), 24 vom: 15. Sept., Seite 1844-57
1. Verfasser: Hughes, Timothy J (VerfasserIn)
Weitere Verfasser: Cardamone, Salvatore, Popelier, Paul L A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't conformational sampling electrostatics kriging protein data bank quantum chemical topology quantum theory of atoms in molecules Amino Acids
LEADER 01000caa a22002652c 4500
001 NLM251469182
003 DE-627
005 20250218222434.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.24006  |2 doi 
028 5 2 |a pubmed25n0838.xml 
035 |a (DE-627)NLM251469182 
035 |a (NLM)26235784 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hughes, Timothy J  |e verfasserin  |4 aut 
245 1 0 |a Realistic sampling of amino acid geometries for a multipolar polarizable force field 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.06.2016 
500 |a Date Revised 11.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. 
520 |a The Quantum Chemical Topological Force Field (QCTFF) uses the machine learning method kriging to map atomic multipole moments to the coordinates of all atoms in the molecular system. It is important that kriging operates on relevant and realistic training sets of molecular geometries. Therefore, we sampled single amino acid geometries directly from protein crystal structures stored in the Protein Databank (PDB). This sampling enhances the conformational realism (in terms of dihedral angles) of the training geometries. However, these geometries can be fraught with inaccurate bond lengths and valence angles due to artefacts of the refinement process of the X-ray diffraction patterns, combined with experimentally invisible hydrogen atoms. This is why we developed a hybrid PDB/nonstationary normal modes (NM) sampling approach called PDB/NM. This method is superior over standard NM sampling, which captures only geometries optimized from the stationary points of single amino acids in the gas phase. Indeed, PDB/NM combines the sampling of relevant dihedral angles with chemically correct local geometries. Geometries sampled using PDB/NM were used to build kriging models for alanine and lysine, and their prediction accuracy was compared to models built from geometries sampled from three other sampling approaches. Bond length variation, as opposed to variation in dihedral angles, puts pressure on prediction accuracy, potentially lowering it. Hence, the larger coverage of dihedral angles of the PDB/NM method does not deteriorate the predictive accuracy of kriging models, compared to the NM sampling around local energetic minima used so far in the development of QCTFF 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a conformational sampling 
650 4 |a electrostatics 
650 4 |a kriging 
650 4 |a protein data bank 
650 4 |a quantum chemical topology 
650 4 |a quantum theory of atoms in molecules 
650 7 |a Amino Acids  |2 NLM 
700 1 |a Cardamone, Salvatore  |e verfasserin  |4 aut 
700 1 |a Popelier, Paul L A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 36(2015), 24 vom: 15. Sept., Seite 1844-57  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:36  |g year:2015  |g number:24  |g day:15  |g month:09  |g pages:1844-57 
856 4 0 |u http://dx.doi.org/10.1002/jcc.24006  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2015  |e 24  |b 15  |c 09  |h 1844-57