Markov Network-Based Unified Classifier for Face Recognition

In this paper, we propose a novel unifying framework using a Markov network to learn the relationships among multiple classifiers. In face recognition, we assume that we have several complementary classifiers available, and assign observation nodes to the features of a query image and hidden nodes t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 11 vom: 21. Nov., Seite 4263-75
1. Verfasser: Hwang, Wonjun (VerfasserIn)
Weitere Verfasser: Kim, Junmo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM251310914
003 DE-627
005 20231224161726.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2460464  |2 doi 
028 5 2 |a pubmed24n0837.xml 
035 |a (DE-627)NLM251310914 
035 |a (NLM)26219095 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hwang, Wonjun  |e verfasserin  |4 aut 
245 1 0 |a Markov Network-Based Unified Classifier for Face Recognition 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.04.2016 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, we propose a novel unifying framework using a Markov network to learn the relationships among multiple classifiers. In face recognition, we assume that we have several complementary classifiers available, and assign observation nodes to the features of a query image and hidden nodes to those of gallery images. Under the Markov assumption, we connect each hidden node to its corresponding observation node and the hidden nodes of neighboring classifiers. For each observation-hidden node pair, we collect the set of gallery candidates most similar to the observation instance, and capture the relationship between the hidden nodes in terms of a similarity matrix among the retrieved gallery images. Posterior probabilities in the hidden nodes are computed using the belief propagation algorithm, and we use marginal probability as the new similarity value of the classifier. The novelty of our proposed framework lies in the method that considers classifier dependence using the results of each neighboring classifier. We present the extensive evaluation results for two different protocols, known and unknown image variation tests, using four publicly available databases: 1) the Face Recognition Grand Challenge ver. 2.0; 2) XM2VTS; 3) BANCA; and 4) Multi-PIE. The result shows that our framework consistently yields improved recognition rates in various situations 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Kim, Junmo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 11 vom: 21. Nov., Seite 4263-75  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:11  |g day:21  |g month:11  |g pages:4263-75 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2460464  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 11  |b 21  |c 11  |h 4263-75