Comparison of radii sets, entropy, QM methods, and sampling on MM-PBSA, MM-GBSA, and QM/MM-GBSA ligand binding energies of F. tularensis enoyl-ACP reductase (FabI)

© 2015 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 36(2015), 25 vom: 30. Sept., Seite 1859-73
1. Verfasser: Su, Pin-Chih (VerfasserIn)
Weitere Verfasser: Tsai, Cheng-Chieh, Mehboob, Shahila, Hevener, Kirk E, Johnson, Michael E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Comparative Study Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't enoyl acyl reductase (FabI), implicit solvent models molecular dynamics quantum mechanics/molecular mechanics radii sets Benzimidazoles Enzyme Inhibitors mehr... Ligands benzimidazole E24GX49LD8 Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) EC 1.3.1.9
LEADER 01000naa a22002652 4500
001 NLM251283976
003 DE-627
005 20231224161654.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.24011  |2 doi 
028 5 2 |a pubmed24n0837.xml 
035 |a (DE-627)NLM251283976 
035 |a (NLM)26216222 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Su, Pin-Chih  |e verfasserin  |4 aut 
245 1 0 |a Comparison of radii sets, entropy, QM methods, and sampling on MM-PBSA, MM-GBSA, and QM/MM-GBSA ligand binding energies of F. tularensis enoyl-ACP reductase (FabI) 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.05.2016 
500 |a Date Revised 11.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2015 Wiley Periodicals, Inc. 
520 |a To validate a method for predicting the binding affinities of FabI inhibitors, three implicit solvent methods, MM-PBSA, MM-GBSA, and QM/MM-GBSA were carefully compared using 16 benzimidazole inhibitors in complex with Francisella tularensis FabI. The data suggests that the prediction results are sensitive to radii sets, GB methods, QM Hamiltonians, sampling protocols, and simulation length, if only one simulation trajectory is used for each ligand. In this case, QM/MM-GBSA using 6 ns MD simulation trajectories together with GB(neck2) , PM3, and the mbondi2 radii set, generate the closest agreement with experimental values (r(2)  = 0.88). However, if the three implicit solvent methods are averaged from six 1 ns MD simulations for each ligand (called "multiple independent sampling"), the prediction results are relatively insensitive to all the tested parameters. Moreover, MM/GBSA together with GB(HCT) and mbondi, using 600 frames extracted evenly from six 0.25 ns MD simulations, can also provide accurate prediction to experimental values (r(2)  = 0.84). Therefore, the multiple independent sampling method can be more efficient than a single, long simulation method. Since future scaffold expansions may significantly change the benzimidazole's physiochemical properties (charges, etc.) and possibly binding modes, which may affect the sensitivities of various parameters, the relatively insensitive "multiple independent sampling method" may avoid the need of an entirely new validation study. Moreover, due to large fluctuating entropy values, (QM/)MM-P(G)BSA were limited to inhibitors' relative affinity prediction, but not the absolute affinity. The developed protocol will support an ongoing benzimidazole lead optimization program 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a enoyl acyl reductase (FabI), implicit solvent models 
650 4 |a molecular dynamics 
650 4 |a quantum mechanics/molecular mechanics 
650 4 |a radii sets 
650 7 |a Benzimidazoles  |2 NLM 
650 7 |a Enzyme Inhibitors  |2 NLM 
650 7 |a Ligands  |2 NLM 
650 7 |a benzimidazole  |2 NLM 
650 7 |a E24GX49LD8  |2 NLM 
650 7 |a Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)  |2 NLM 
650 7 |a EC 1.3.1.9  |2 NLM 
700 1 |a Tsai, Cheng-Chieh  |e verfasserin  |4 aut 
700 1 |a Mehboob, Shahila  |e verfasserin  |4 aut 
700 1 |a Hevener, Kirk E  |e verfasserin  |4 aut 
700 1 |a Johnson, Michael E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 36(2015), 25 vom: 30. Sept., Seite 1859-73  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:36  |g year:2015  |g number:25  |g day:30  |g month:09  |g pages:1859-73 
856 4 0 |u http://dx.doi.org/10.1002/jcc.24011  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2015  |e 25  |b 30  |c 09  |h 1859-73