Enhancement of Triboluminescence in the Presence of CO2 by Sliding between Silica and Yttria-Stabilized Zirconia

Triboluminescence (TL) has gained increasing attention in the past two decades due to its potential for many applications such as an in situ damage sensor, X-ray source, spectroscopic probe, and optical switch. So far the mechanisms by which TL is excited are not well understood. We have investigate...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 30 vom: 04. Aug., Seite 8224-7
1. Verfasser: Wang, Kuifang (VerfasserIn)
Weitere Verfasser: Ma, Liran, Xu, Xuefeng, Wen, Shizhu, Zhang, Yirui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Triboluminescence (TL) has gained increasing attention in the past two decades due to its potential for many applications such as an in situ damage sensor, X-ray source, spectroscopic probe, and optical switch. So far the mechanisms by which TL is excited are not well understood. We have investigated the TL emitted during the sliding contact between silica wafer and YSZ (yttria-stabilized zirconia) wafers in CO2 gas, ambient air, and vacuum. We discovered that the mean intensity of photons emitted in CO2 gas is nearly a hundred times stronger than that in air. TL induced in the sliding experiment is proposed to be due to a combination of chemical luminescence, impurities and vacancies luminescence. In addition, the intensity of the light emission of YSZ may be controlled by changing the concentration of CO2 gas
Beschreibung:Date Completed 09.10.2015
Date Revised 04.08.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b01335