A Class of Manifold Regularized Multiplicative Update Algorithms for Image Clustering

Multiplicative update algorithms are important tools for information retrieval, image processing, and pattern recognition. However, when the graph regularization is added to the cost function, different classes of sample data may be mapped to the same subspace, which leads to the increase of data cl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 12 vom: 15. Dez., Seite 5302-14
1. Verfasser: Yang, Shangming (VerfasserIn)
Weitere Verfasser: Yi, Zhang, He, Xiaofei, Li, Xuelong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM250998521
003 DE-627
005 20231224161030.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2457033  |2 doi 
028 5 2 |a pubmed24n0836.xml 
035 |a (DE-627)NLM250998521 
035 |a (NLM)26186793 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Shangming  |e verfasserin  |4 aut 
245 1 2 |a A Class of Manifold Regularized Multiplicative Update Algorithms for Image Clustering 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.02.2016 
500 |a Date Revised 27.01.2016 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multiplicative update algorithms are important tools for information retrieval, image processing, and pattern recognition. However, when the graph regularization is added to the cost function, different classes of sample data may be mapped to the same subspace, which leads to the increase of data clustering error rate. In this paper, an improved nonnegative matrix factorization (NMF) cost function is introduced. Based on the cost function, a class of novel graph regularized NMF algorithms is developed, which results in a class of extended multiplicative update algorithms with manifold structure regularization. Analysis shows that in the learning, the proposed algorithms can efficiently minimize the rank of the data representation matrix. Theoretical results presented in this paper are confirmed by simulations. For different initializations and data sets, variation curves of cost functions and decomposition data are presented to show the convergence features of the proposed update rules. Basis images, reconstructed images, and clustering results are utilized to present the efficiency of the new algorithms. Last, the clustering accuracies of different algorithms are also investigated, which shows that the proposed algorithms can achieve state-of-the-art performance in applications of image clustering 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yi, Zhang  |e verfasserin  |4 aut 
700 1 |a He, Xiaofei  |e verfasserin  |4 aut 
700 1 |a Li, Xuelong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 12 vom: 15. Dez., Seite 5302-14  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:12  |g day:15  |g month:12  |g pages:5302-14 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2457033  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 12  |b 15  |c 12  |h 5302-14