Objective Quality Assessment of Interpolated Natural Images

Image interpolation techniques that create high-resolution images from low-resolution (LR) images are widely used in real world applications, but how to evaluate the quality of interpolated images is not a well-resolved issue. Subjective assessment methods are useful and reliable, but are also slow...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 11 vom: 10. Nov., Seite 4651-63
1. Verfasser: Yeganeh, Hojatollah (VerfasserIn)
Weitere Verfasser: Rostami, Mohammad, Wang, Zhou
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM250998483
003 DE-627
005 20250218203026.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0836.xml 
035 |a (DE-627)NLM250998483 
035 |a (NLM)26186792 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yeganeh, Hojatollah  |e verfasserin  |4 aut 
245 1 0 |a Objective Quality Assessment of Interpolated Natural Images 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.04.2016 
500 |a Date Revised 16.09.2015 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Image interpolation techniques that create high-resolution images from low-resolution (LR) images are widely used in real world applications, but how to evaluate the quality of interpolated images is not a well-resolved issue. Subjective assessment methods are useful and reliable, but are also slow and expensive. Here, we propose an objective method to assess the quality of an interpolated natural image using the available LR image as a reference. Our method adopts a natural scene statistics (NSS) framework, where image quality degradation is gauged by the deviation of its statistical features from the NSS models trained upon high-quality natural images. Two distortion measures are proposed, namely, interpolated natural image distortion (IND) and weighted IND. Validations by subjective tests show that the proposed approach performs statistically equivalent or sometimes better than an average human subject. Moreover, we demonstrate the potential application of the proposed method in parameter tuning of image interpolation algorithms 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Rostami, Mohammad  |e verfasserin  |4 aut 
700 1 |a Wang, Zhou  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 11 vom: 10. Nov., Seite 4651-63  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:11  |g day:10  |g month:11  |g pages:4651-63 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 11  |b 10  |c 11  |h 4651-63