|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM250889218 |
003 |
DE-627 |
005 |
20240323233720.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2015 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/erv328
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1342.xml
|
035 |
|
|
|a (DE-627)NLM250889218
|
035 |
|
|
|a (NLM)26175355
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Deng, Xing-Guang
|e verfasserin
|4 aut
|
245 |
1 |
4 |
|a The alternative respiratory pathway is involved in brassinosteroid-induced environmental stress tolerance in Nicotiana benthamiana
|
264 |
|
1 |
|c 2015
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 19.07.2016
|
500 |
|
|
|a Date Revised 23.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
|
520 |
|
|
|a Brassinosteroids (BRs), plant steroid hormones, play essential roles in modulating cell elongation, vascular differentiation, senescence, and stress responses. However, the mechanisms by which BRs regulate plant mitochondria and resistance to abiotic stress remain largely unclear. Mitochondrial alternative oxidase (AOX) is involved in the plant response to a variety of environmental stresses. In this report, the role of AOX in BR-induced tolerance against cold, polyethylene glycol (PEG), and high-light stresses was investigated. Exogenous applied brassinolide (BL, the most active BR) induced, while brassinazole (BRZ, a BR biosynthesis inhibitor) reduced alternative respiration and AOX1 expression in Nicotiana benthamiana. Chemical scavenging of H2O2 and virus-induced gene silencing (VIGS) of NbRBOHB compromised the BR-induced alternative respiratory pathway, and this result was further confirmed by NbAOX1 promoter analysis. Furthermore, inhibition of AOX activity by chemical treatment or a VIGS-based approach decreased plant resistance to environmental stresses and compromised BR-induced stress tolerance. Taken together, our results indicate that BR-induced AOX capability might contribute to the avoidance of superfluous reactive oxygen species accumulation and the protection of photosystems under stress conditions in N. benthamiana
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Alternative oxidase
|
650 |
|
4 |
|a Nicotiana benthamiana
|
650 |
|
4 |
|a brassinosteroids
|
650 |
|
4 |
|a reactive oxygen species
|
650 |
|
4 |
|a stress tolerance.
|
650 |
|
7 |
|a Brassinosteroids
|2 NLM
|
650 |
|
7 |
|a Mitochondrial Proteins
|2 NLM
|
650 |
|
7 |
|a Plant Growth Regulators
|2 NLM
|
650 |
|
7 |
|a Plant Proteins
|2 NLM
|
650 |
|
7 |
|a Reactive Oxygen Species
|2 NLM
|
650 |
|
7 |
|a Steroids, Heterocyclic
|2 NLM
|
650 |
|
7 |
|a Triazoles
|2 NLM
|
650 |
|
7 |
|a Polyethylene Glycols
|2 NLM
|
650 |
|
7 |
|a 3WJQ0SDW1A
|2 NLM
|
650 |
|
7 |
|a Oxidoreductases
|2 NLM
|
650 |
|
7 |
|a EC 1.-
|2 NLM
|
650 |
|
7 |
|a alternative oxidase
|2 NLM
|
650 |
|
7 |
|a EC 1.-
|2 NLM
|
650 |
|
7 |
|a brassinazole
|2 NLM
|
650 |
|
7 |
|a N9XRW3TF90
|2 NLM
|
650 |
|
7 |
|a brassinolide
|2 NLM
|
650 |
|
7 |
|a Y9IQ1L53OX
|2 NLM
|
700 |
1 |
|
|a Zhu, Tong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Da-Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Hong-Hui
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 66(2015), 20 vom: 15. Okt., Seite 6219-32
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:66
|g year:2015
|g number:20
|g day:15
|g month:10
|g pages:6219-32
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/erv328
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 66
|j 2015
|e 20
|b 15
|c 10
|h 6219-32
|