The Cu2O2 torture track for a real-life system : [Cu2(btmgp)2O2](2+) oxo and peroxo species in density functional calculations

© 2015 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 36(2015), 22 vom: 15. Aug., Seite 1672-85
1. Verfasser: Rohrmüller, Martin (VerfasserIn)
Weitere Verfasser: Hoffmann, Alexander, Thierfelder, Christian, Herres-Pawlis, Sonja, Schmidt, Wolf Gero
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't copper density functional theory oxygen plane wave time-dependent density functional theory Peroxides Copper 789U1901C5 mehr... Oxygen S88TT14065
Beschreibung
Zusammenfassung:© 2015 Wiley Periodicals, Inc.
Density functional theory (DFT) calculations of the equilibrium geometry, vibrational modes, ionization energies, electron affinities, and optical response of [Cu2(btmgp)2(μ-O)2](2+) (oxo) and [Cu2(btmgp)2(μ-η(2):η(2)-O2)](2+) (peroxo) are presented. Comprehensive benchmarking shows that the description of the oxo-peroxo energetics is still a torture track for DFT, but finds the molecular geometry to be comparatively robust with respect to changes in the exchange-correlation functionals and basis sets. Pure functionals favor the oxo core found experimentally, whereas hybrid functionals shift the bias toward the peroxo core. Further stabilization of peroxo core results from relaxing the spin degrees of freedom using the broken-symmetry (BS) approach. Dispersion effects, conversely, tend to favor the oxo configuration. Triple-zeta basis sets are found to represent a sensible compromise between numerical accuracy and computational effort. Particular attention is paid to the modification of the electronic structure, optical transitions, and excited-state energies along the transition path between the oxo and peroxo species. The excited-state potential energy surface calculations indicate that two triplet states are involved in the transition that stabilize the BS solution. Charge decomposition and natural transition orbital analyses are used for obtaining microscopic insight into the molecular orbital interactions. Here, the crucial role of guanidine π-interactions is highlighted for the stabilization of the Cu2O2 core
Beschreibung:Date Completed 06.01.2016
Date Revised 16.07.2015
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.23983