The L0 Regularized Mumford-Shah Model for Bias Correction and Segmentation of Medical Images

We propose a new variant of the Mumford-Shah model for simultaneous bias correction and segmentation of images with intensity inhomogeneity. First, based on the model of images with intensity inhomogeneity, we introduce an L0 gradient regularizer to model the true intensity and a smooth regularizer...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 11 vom: 04. Nov., Seite 3927-38
Auteur principal: Duan, Yuping (Auteur)
Autres auteurs: Chang, Huibin, Huang, Weimin, Zhou, Jiayin, Lu, Zhongkang, Wu, Chunlin
Format: Article en ligne
Langue:English
Publié: 2015
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM25066321X
003 DE-627
005 20250218191127.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2451957  |2 doi 
028 5 2 |a pubmed25n0835.xml 
035 |a (DE-627)NLM25066321X 
035 |a (NLM)26151940 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Duan, Yuping  |e verfasserin  |4 aut 
245 1 4 |a The L0 Regularized Mumford-Shah Model for Bias Correction and Segmentation of Medical Images 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.04.2016 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We propose a new variant of the Mumford-Shah model for simultaneous bias correction and segmentation of images with intensity inhomogeneity. First, based on the model of images with intensity inhomogeneity, we introduce an L0 gradient regularizer to model the true intensity and a smooth regularizer to model the bias field. In addition, we derive a new data fidelity using the local intensity properties to allow the bias field to be influenced by its neighborhood. Second, we use a two-stage segmentation method, where the fast alternating direction method is implemented in the first stage for the recovery of true intensity and bias field and a simple thresholding is used in the second stage for segmentation. Different from most of the existing methods for simultaneous bias correction and segmentation, we estimate the bias field and true intensity without fixing either the number of the regions or their values in advance. Our method has been validated on medical images of various modalities with intensity inhomogeneity. Compared with the state-of-art approaches and the well-known brain software tools, our model is fast, accurate, and robust with initializations 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Chang, Huibin  |e verfasserin  |4 aut 
700 1 |a Huang, Weimin  |e verfasserin  |4 aut 
700 1 |a Zhou, Jiayin  |e verfasserin  |4 aut 
700 1 |a Lu, Zhongkang  |e verfasserin  |4 aut 
700 1 |a Wu, Chunlin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 11 vom: 04. Nov., Seite 3927-38  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:11  |g day:04  |g month:11  |g pages:3927-38 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2451957  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 11  |b 04  |c 11  |h 3927-38