Manifold Kernel Sparse Representation of Symmetric Positive-Definite Matrices and Its Applications

The symmetric positive-definite (SPD) matrix, as a connected Riemannian manifold, has become increasingly popular for encoding image information. Most existing sparse models are still primarily developed in the Euclidean space. They do not consider the non-linear geometrical structure of the data sp...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 11 vom: 04. Nov., Seite 3729-41
1. Verfasser: Wu, Yuwei (VerfasserIn)
Weitere Verfasser: Jia, Yunde, Li, Peihua, Zhang, Jian, Yuan, Junsong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM250663198
003 DE-627
005 20231224160313.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2451953  |2 doi 
028 5 2 |a pubmed24n0835.xml 
035 |a (DE-627)NLM250663198 
035 |a (NLM)26151938 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Yuwei  |e verfasserin  |4 aut 
245 1 0 |a Manifold Kernel Sparse Representation of Symmetric Positive-Definite Matrices and Its Applications 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.04.2016 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The symmetric positive-definite (SPD) matrix, as a connected Riemannian manifold, has become increasingly popular for encoding image information. Most existing sparse models are still primarily developed in the Euclidean space. They do not consider the non-linear geometrical structure of the data space, and thus are not directly applicable to the Riemannian manifold. In this paper, we propose a novel sparse representation method of SPD matrices in the data-dependent manifold kernel space. The graph Laplacian is incorporated into the kernel space to better reflect the underlying geometry of SPD matrices. Under the proposed framework, we design two different positive definite kernel functions that can be readily transformed to the corresponding manifold kernels. The sparse representation obtained has more discriminating power. Extensive experimental results demonstrate good performance of manifold kernel sparse codes in image classification, face recognition, and visual tracking 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Jia, Yunde  |e verfasserin  |4 aut 
700 1 |a Li, Peihua  |e verfasserin  |4 aut 
700 1 |a Zhang, Jian  |e verfasserin  |4 aut 
700 1 |a Yuan, Junsong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 11 vom: 04. Nov., Seite 3729-41  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:11  |g day:04  |g month:11  |g pages:3729-41 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2451953  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 11  |b 04  |c 11  |h 3729-41