Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems

© 2015 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 21(2015), 12 vom: 30. Dez., Seite 4508-19
1. Verfasser: Hicks Pries, Caitlin E (VerfasserIn)
Weitere Verfasser: van Logtestijn, Richard S P, Schuur, Edward A G, Natali, Susan M, Cornelissen, Johannes H C, Aerts, Rien, Dorrepaal, Ellen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. autotrophic carbon climate change feedback ecosystem respiration heterotrophic permafrost thaw radiocarbon mehr... warming experiment Soil
LEADER 01000naa a22002652 4500
001 NLM250646994
003 DE-627
005 20231224160252.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.13032  |2 doi 
028 5 2 |a pubmed24n0835.xml 
035 |a (DE-627)NLM250646994 
035 |a (NLM)26150277 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hicks Pries, Caitlin E  |e verfasserin  |4 aut 
245 1 0 |a Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.08.2016 
500 |a Date Revised 16.11.2017 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2015 John Wiley & Sons Ltd. 
520 |a Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5 years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short- and long-term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon-rich permafrost ecosystems 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a autotrophic 
650 4 |a carbon 
650 4 |a climate change feedback 
650 4 |a ecosystem respiration 
650 4 |a heterotrophic 
650 4 |a permafrost thaw 
650 4 |a radiocarbon 
650 4 |a warming experiment 
650 7 |a Soil  |2 NLM 
700 1 |a van Logtestijn, Richard S P  |e verfasserin  |4 aut 
700 1 |a Schuur, Edward A G  |e verfasserin  |4 aut 
700 1 |a Natali, Susan M  |e verfasserin  |4 aut 
700 1 |a Cornelissen, Johannes H C  |e verfasserin  |4 aut 
700 1 |a Aerts, Rien  |e verfasserin  |4 aut 
700 1 |a Dorrepaal, Ellen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 21(2015), 12 vom: 30. Dez., Seite 4508-19  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:21  |g year:2015  |g number:12  |g day:30  |g month:12  |g pages:4508-19 
856 4 0 |u http://dx.doi.org/10.1111/gcb.13032  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2015  |e 12  |b 30  |c 12  |h 4508-19