Benchmark calculations of the adsorption of aromatic molecules on graphene

© 2015 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 36(2015), 23 vom: 05. Sept., Seite 1763-71
1. Verfasser: Wang, Weizhou (VerfasserIn)
Weitere Verfasser: Sun, Tao, Zhang, Yu, Wang, Yi-Bo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article adsorption aromatic molecules benchmark calculations graphene
Beschreibung
Zusammenfassung:© 2015 Wiley Periodicals, Inc.
Selecting the saturated graphene fragment as a model of graphene, we have investigated seven popular density functionals, including ωB97X-D, B97-D, B-LYP-D3, M05-2X, M06-2X, M11-L, and N12, for their performance in describing the adsorption of aromatic molecules on graphene. The best performing functionals are B97-D, B-LYP-D3, and ωB97X-D. M05-2X, M06-2X, and M11-L significantly underestimate the adsorption strengths, while N12 fails completely in this respect. The effects of the basis sets and size of the saturated graphene fragments on the geometries, energies, and properties for the adsorption of aromatic molecules on graphene have also been studied. It was found that the small basis sets such as 6-31G(d) and jun-cc-pVDZ are not suitable for the accurate description of the adsorption of aromatic molecules on graphene. The size of selected graphene fragments has a little effect on both the ωB97X-D and SCS-SAPT0 interaction energies, but the effects of the size of selected graphene fragments on the energy components are significant in some cases of the adsorption of aromatic molecules on graphene. The surprising weakness of electrostatic interactions by F substitution for the adsorption of F-substituted benzenes on graphene was explained using the energy component analysis
Beschreibung:Date Completed 28.09.2015
Date Revised 22.07.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.23994