Evaluation of the simultaneous biogas upgrading and treatment of centrates in a high-rate algal pond through C, N and P mass balances
The simultaneous capture of CO2 from biogas and removal of carbon and nutrients from diluted centrates in a 180 L high-rate algal pond (HRAP) interconnected to a 2.5 L absorption column were evaluated using a C, N and P mass balance approach. The experimental set-up was operated indoors at 75 μE/m(2...
Publié dans: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 72(2015), 1 vom: 21., Seite 150-7 |
---|---|
Auteur principal: | |
Autres auteurs: | , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2015
|
Accès à la collection: | Water science and technology : a journal of the International Association on Water Pollution Research |
Sujets: | Evaluation Study Journal Article Research Support, Non-U.S. Gov't Biofuels Phosphorus 27YLU75U4W Carbon 7440-44-0 Nitrogen N762921K75 |
Résumé: | The simultaneous capture of CO2 from biogas and removal of carbon and nutrients from diluted centrates in a 180 L high-rate algal pond (HRAP) interconnected to a 2.5 L absorption column were evaluated using a C, N and P mass balance approach. The experimental set-up was operated indoors at 75 μE/m(2)·s for 24 h/d at 20 days of hydraulic retention time for 2 months of steady state, and supported a C-CO2 removal in the absorption column of 55 ± 6%. Carbon fixation into biomass only accounted for 9 ± 2% of the total C input, which explains the low biomass productivity recorded in the HRAP. In this context, the low impinging light intensity along with the high turbulence in the culture broth entailed a C stripping as CO2 of 49 ± 5% of the total carbon input. Nitrification was the main NH4(+) removal mechanism and accounted for 47 ± 2% of the inlet N-NH4(+), while N removal as biomass represented 14 ± 2% of the total nitrogen input. A luxury P uptake was recorded, which resulted in a P-PO4(-3) biomass content over structural requirements (2.5 ± 0.1%). Phosphorus assimilation corresponded to a 77 ± 2% of the inlet dissolved P-PO4(-3) removed |
---|---|
Description: | Date Completed 28.09.2015 Date Revised 10.12.2019 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |
DOI: | 10.2166/wst.2015.198 |