Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations

Copyright © 2015 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 94(2015) vom: 07. Sept., Seite 191-6
1. Verfasser: Hernández, Ismaél Gatica (VerfasserIn)
Weitere Verfasser: Gomez, Federico José Vicente, Cerutti, Soledad, Arana, María Verónica, Silva, María Fernanda
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Arabidopsis thaliana Germination Melatonin Senescence UHPLC-MS/MS Plant Growth Regulators JL5DK93RCL
Beschreibung
Zusammenfassung:Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Since the discovery of melatonin in plants, several roles have been described for different species, organs, and developmental stages. Arabidopsis thaliana, being a model plant species, is adequate to contribute to the elucidation of the role of melatonin in plants. In this work, melatonin was monitored daily by UHPLC-MS/MS in leaves, in order to study its diurnal accumulation as well as the effects of natural and artificial light treatments on its concentration. Furthermore, the effects of exogenous application of melatonin to assess its role in seed viability after heat stress and as a regulator of growth and development of vegetative tissues were evaluated. Our results indicate that melatonin contents in Arabidopsis were higher in plants growing under natural radiation when compared to those growing under artificial conditions, and its levels were not diurnally-regulated. Exogenous melatonin applications prolonged seed viability after heat stress conditions. In addition, melatonin applications retarded leaf senescence. Its effects as growth promoter were dose and tissue-dependent; stimulating root growth at low concentrations and decreasing leaf area at high doses
Beschreibung:Date Completed 18.04.2016
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2015.06.011