Unsupervised Texture Flow Estimation Using Appearance-Space Clustering and Correspondence

This paper presents a texture flow estimation method that uses an appearance-space clustering and a correspondence search in the space of deformed exemplars. To estimate the underlying texture flow, such as scale, orientation, and texture label, most existing approaches require a certain amount of u...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 11 vom: 25. Nov., Seite 3652-65
1. Verfasser: Choi, Sunghwan (VerfasserIn)
Weitere Verfasser: Min, Dongbo, Ham, Bumsub, Sohn, Kwanghoon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM250310619
003 DE-627
005 20250218174815.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2449078  |2 doi 
028 5 2 |a pubmed25n0834.xml 
035 |a (DE-627)NLM250310619 
035 |a (NLM)26111394 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Choi, Sunghwan  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Texture Flow Estimation Using Appearance-Space Clustering and Correspondence 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a texture flow estimation method that uses an appearance-space clustering and a correspondence search in the space of deformed exemplars. To estimate the underlying texture flow, such as scale, orientation, and texture label, most existing approaches require a certain amount of user interactions. Strict assumptions on a geometric model further limit the flow estimation to such a near-regular texture as a gradient-like pattern. We address these problems by extracting distinct texture exemplars in an unsupervised way and using an efficient search strategy on a deformation parameter space. This enables estimating a coherent flow in a fully automatic manner, even when an input image contains multiple textures of different categories. A set of texture exemplars that describes the input texture image is first extracted via a medoid-based clustering in appearance space. The texture exemplars are then matched with the input image to infer deformation parameters. In particular, we define a distance function for measuring a similarity between the texture exemplar and a deformed target patch centered at each pixel from the input image, and then propose to use a randomized search strategy to estimate these parameters efficiently. The deformation flow field is further refined by adaptively smoothing the flow field under guidance of a matching confidence score. We show that a local visual similarity, directly measured from appearance space, explains local behaviors of the flow very well, and the flow field can be estimated very efficiently when the matching criterion meets the randomized search strategy. Experimental results on synthetic and natural images show that the proposed method outperforms existing methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Min, Dongbo  |e verfasserin  |4 aut 
700 1 |a Ham, Bumsub  |e verfasserin  |4 aut 
700 1 |a Sohn, Kwanghoon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 11 vom: 25. Nov., Seite 3652-65  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:11  |g day:25  |g month:11  |g pages:3652-65 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2449078  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 11  |b 25  |c 11  |h 3652-65