Carbon Nanotube Nanocomposites with Highly Enhanced Strength and Conductivity for Flexible Electric Circuits

Carbon nanotubes (CNTs) have an important role in nanotechnology due to their unique properties, retaining the inherent material flexibility, superior strength, and electrical conductivity, unless the bottleneck of CNTs persists and the aggregated structure is overcome. Here, we report on the highly...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 31(2015), 28 vom: 21. Juli, Seite 7844-51
1. Verfasser: Hwang, Ji-Young (VerfasserIn)
Weitere Verfasser: Kim, Han-Sem, Kim, Jeong Hun, Shin, Ueon Sang, Lee, Sang-Hoon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Nanotubes, Carbon Chitosan 9012-76-4
Beschreibung
Zusammenfassung:Carbon nanotubes (CNTs) have an important role in nanotechnology due to their unique properties, retaining the inherent material flexibility, superior strength, and electrical conductivity, unless the bottleneck of CNTs persists and the aggregated structure is overcome. Here, we report on the highly enhanced mechanical and electrical properties of the CNT-chitosan nanocomposites through homogeneous dispersion of CNTs into chitosan solution using a high-pressure homogenizer. The optimal condition is a 50% (w/w) chitosan-CNT film, providing about 7 nm thickness of homogeneous chitosan layer on CNTs, a good tensile strength of 51 MPa, high electrical conductivity under 16 Ω/sq, and a stable bending and folding performance. This CNT-chitosan nanocomposite with highly enhanced properties is an amenable material to fabricate structures of various shapes such as films, sensors, and circuits and also enables a simple and cost-effective approach to improve the performance of a device that presents the first flexible and soft electric circuits yet reported using only CNT-chitosan as the conductor
Beschreibung:Date Completed 19.04.2016
Date Revised 25.11.2016
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b00845