|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM250259125 |
003 |
DE-627 |
005 |
20240323233610.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2015 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/erv307
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1342.xml
|
035 |
|
|
|a (DE-627)NLM250259125
|
035 |
|
|
|a (NLM)26105997
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a in 't Zandt, Dina
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a High-resolution quantification of root dynamics in split-nutrient rhizoslides reveals rapid and strong proliferation of maize roots in response to local high nitrogen
|
264 |
|
1 |
|c 2015
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 16.05.2016
|
500 |
|
|
|a Date Revised 23.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
|
520 |
|
|
|a The plant's root system is highly plastic, and can respond to environmental stimuli such as high nitrogen (N) in patches. A root may respond to an N patch by selective placement of new lateral roots, and therewith increases root N uptake. This may be a desirable trait in breeding programmes, since it decreases NO3(-) leaching and N2O emission. Roots of maize (Zea mays L.) were grown without N in split-nutrient rhizoslides. One side of the slides was exposed to high N after 15 d of root development, and root elongation was measured for another 15 d, described in a time course model and parameterized. The elongation rates of crown axile roots on the N-treated side of the plant followed a logistic increase to a maximum of 5.3cm d(-1); 95% of the maximum were reached within 4 d. At the same time, on the untreated side, axile root elongation dropped linearly to 1.2cm d(-1) within 6.4 d and stayed constant thereafter. Twice as many lateral roots were formed on the crown axis on the N side compared to the untreated side. Most strikingly, the elongation rates of laterals of the N side increased linearly with most of the roots reaching an asymptote ~8 d after start of the N treatment. By contrast, laterals on the side without N did not show any detectable elongation beyond the first day after their emergence. We conclude that split-nutrient rhizoslides have great potential to improve our knowledge about nitrogen responsiveness and selection for contrasting genotypes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Corn
|
650 |
|
4 |
|a foraging
|
650 |
|
4 |
|a nitrogen
|
650 |
|
4 |
|a rhizotrons
|
650 |
|
4 |
|a root growth
|
650 |
|
4 |
|a split-root.
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Le Marié, Chantal
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kirchgessner, Norbert
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Visser, Eric J W
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hund, Andreas
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 66(2015), 18 vom: 24. Sept., Seite 5507-17
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:66
|g year:2015
|g number:18
|g day:24
|g month:09
|g pages:5507-17
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/erv307
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 66
|j 2015
|e 18
|b 24
|c 09
|h 5507-17
|