Image Restoration Using Gaussian Mixture Models With Spatially Constrained Patch Clustering

In this paper, we address the problem of recovering degraded images using multivariate Gaussian mixture model (GMM) as a prior. The GMM framework in our method for image restoration is based on the assumption that the accumulation of similar patches in a neighborhood are derived from a multivariate...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 11 vom: 18. Nov., Seite 3624-36
1. Verfasser: Niknejad, Milad (VerfasserIn)
Weitere Verfasser: Rabbani, Hossein, Babaie-Zadeh, Massoud
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM250198274
003 DE-627
005 20231224155222.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2447836  |2 doi 
028 5 2 |a pubmed24n0834.xml 
035 |a (DE-627)NLM250198274 
035 |a (NLM)26099147 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Niknejad, Milad  |e verfasserin  |4 aut 
245 1 0 |a Image Restoration Using Gaussian Mixture Models With Spatially Constrained Patch Clustering 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we address the problem of recovering degraded images using multivariate Gaussian mixture model (GMM) as a prior. The GMM framework in our method for image restoration is based on the assumption that the accumulation of similar patches in a neighborhood are derived from a multivariate Gaussian probability distribution with a specific covariance and mean. Previous methods of image restoration with GMM have not considered spatial (geometric) distance between patches in clustering. Our conducted experiments show that in the case of constraining Gaussian estimates into a finite-sized windows, the patch clusters are more likely to be derived from the estimated multivariate Gaussian distributions, i.e., the proposed statistical patch-based model provides a better goodness-of-fit to statistical properties of natural images. A novel approach for computing aggregation weights for image reconstruction from recovered patches is introduced which is based on similarity degree of each patch to the estimated Gaussian clusters. The results admit that in the case of image denoising, our method is highly comparable with the state-of-the-art methods, and our image interpolation method outperforms previous state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Rabbani, Hossein  |e verfasserin  |4 aut 
700 1 |a Babaie-Zadeh, Massoud  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 11 vom: 18. Nov., Seite 3624-36  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:11  |g day:18  |g month:11  |g pages:3624-36 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2447836  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 11  |b 18  |c 11  |h 3624-36