Collapse of Particle-Laden Interfaces under Compression : Buckling vs Particle Expulsion

Colloidal particles can bind to fluid interfaces with a capillary energy that is thousands of times the thermal energy. This phenomenon offers an effective route to emulsion and foam stabilization where the stability is influenced by the phase behavior of the particle-laden interface under deformati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 28 vom: 21. Juli, Seite 7764-75
1. Verfasser: Razavi, Sepideh (VerfasserIn)
Weitere Verfasser: Cao, Kathleen D, Lin, Binhua, Lee, Ka Yee C, Tu, Raymond S, Kretzschmar, Ilona
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Electrolytes Silicon Dioxide 7631-86-9
Beschreibung
Zusammenfassung:Colloidal particles can bind to fluid interfaces with a capillary energy that is thousands of times the thermal energy. This phenomenon offers an effective route to emulsion and foam stabilization where the stability is influenced by the phase behavior of the particle-laden interface under deformation. Despite the vast interest in particle-laden interfaces, the key factors that determine the collapse of such an interface under compression have remained relatively unexplored. In this study, we illustrate the significance of the particle surface wettability and presence of electrolyte in the subphase on interparticle interactions at the interface and the resulting collapse mode. Various collapse mechanisms including buckling, particle expulsion, and multilayer formation are reported and interpreted in terms of particle-particle and particle-interface interactions
Beschreibung:Date Completed 19.04.2016
Date Revised 21.07.2015
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b01652