The effect of time step, thermostat, and strain rate on ReaxFF simulations of mechanical failure in diamond, graphene, and carbon nanotube

© 2015 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 36(2015), 21 vom: 05. Aug., Seite 1587-96
1. Verfasser: Jensen, Benjamin D (VerfasserIn)
Weitere Verfasser: Wise, Kristopher E, Odegard, Gregory M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article SWNT fracture mechanical properties molecular dynamics molecular modeling
LEADER 01000naa a22002652 4500
001 NLM25017359X
003 DE-627
005 20231224155147.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.23970  |2 doi 
028 5 2 |a pubmed24n0833.xml 
035 |a (DE-627)NLM25017359X 
035 |a (NLM)26096628 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jensen, Benjamin D  |e verfasserin  |4 aut 
245 1 4 |a The effect of time step, thermostat, and strain rate on ReaxFF simulations of mechanical failure in diamond, graphene, and carbon nanotube 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.09.2015 
500 |a Date Revised 16.07.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2015 Wiley Periodicals, Inc. 
520 |a As the sophistication of reactive force fields for molecular modeling continues to increase, their use and applicability has also expanded, sometimes beyond the scope of their original development. Reax Force Field (ReaxFF), for example, was originally developed to model chemical reactions, but is a promising candidate for modeling fracture because of its ability to treat covalent bond cleavage. Performing reliable simulations of a complex process like fracture, however, requires an understanding of the effects that various modeling parameters have on the behavior of the system. This work assesses the effects of time step size, thermostat algorithm and coupling coefficient, and strain rate on the fracture behavior of three carbon-based materials: graphene, diamond, and a carbon nanotube. It is determined that the simulated stress-strain behavior is relatively independent of the thermostat algorithm, so long as coupling coefficients are kept above a certain threshold. Likewise, the stress-strain response of the materials was also independent of the strain rate, if it is kept below a maximum strain rate. Finally, the mechanical properties of the materials predicted by the Chenoweth C/H/O parameterization for ReaxFF are compared with literature values. Some deficiencies in the Chenoweth C/H/O parameterization for predicting mechanical properties of carbon materials are observed 
650 4 |a Journal Article 
650 4 |a SWNT 
650 4 |a fracture 
650 4 |a mechanical properties 
650 4 |a molecular dynamics 
650 4 |a molecular modeling 
700 1 |a Wise, Kristopher E  |e verfasserin  |4 aut 
700 1 |a Odegard, Gregory M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 36(2015), 21 vom: 05. Aug., Seite 1587-96  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:36  |g year:2015  |g number:21  |g day:05  |g month:08  |g pages:1587-96 
856 4 0 |u http://dx.doi.org/10.1002/jcc.23970  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2015  |e 21  |b 05  |c 08  |h 1587-96