Cascaded Collaborative Regression for Robust Facial Landmark Detection Trained Using a Mixture of Synthetic and Real Images With Dynamic Weighting

A large amount of training data is usually crucial for successful supervised learning. However, the task of providing training samples is often time-consuming, involving a considerable amount of tedious manual work. In addition, the amount of training data available is often limited. As an alternati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 11 vom: 15. Nov., Seite 3425-40
1. Verfasser: Feng, Zhen-Hua (VerfasserIn)
Weitere Verfasser: Hu, Guosheng, Kittler, Josef, Christmas, William, Wu, Xiao-Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM250084465
003 DE-627
005 20250218165514.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2446944  |2 doi 
028 5 2 |a pubmed25n0833.xml 
035 |a (DE-627)NLM250084465 
035 |a (NLM)26087493 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Feng, Zhen-Hua  |e verfasserin  |4 aut 
245 1 0 |a Cascaded Collaborative Regression for Robust Facial Landmark Detection Trained Using a Mixture of Synthetic and Real Images With Dynamic Weighting 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.04.2016 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a A large amount of training data is usually crucial for successful supervised learning. However, the task of providing training samples is often time-consuming, involving a considerable amount of tedious manual work. In addition, the amount of training data available is often limited. As an alternative, in this paper, we discuss how best to augment the available data for the application of automatic facial landmark detection. We propose the use of a 3D morphable face model to generate synthesized faces for a regression-based detector training. Benefiting from the large synthetic training data, the learned detector is shown to exhibit a better capability to detect the landmarks of a face with pose variations. Furthermore, the synthesized training data set provides accurate and consistent landmarks automatically as compared to the landmarks annotated manually, especially for occluded facial parts. The synthetic data and real data are from different domains; hence the detector trained using only synthesized faces does not generalize well to real faces. To deal with this problem, we propose a cascaded collaborative regression algorithm, which generates a cascaded shape updater that has the ability to overcome the difficulties caused by pose variations, as well as achieving better accuracy when applied to real faces. The training is based on a mix of synthetic and real image data with the mixing controlled by a dynamic mixture weighting schedule. Initially, the training uses heavily the synthetic data, as this can model the gross variations between the various poses. As the training proceeds, progressively more of the natural images are incorporated, as these can model finer detail. To improve the performance of the proposed algorithm further, we designed a dynamic multi-scale local feature extraction method, which captures more informative local features for detector training. An extensive evaluation on both controlled and uncontrolled face data sets demonstrates the merit of the proposed algorithm 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hu, Guosheng  |e verfasserin  |4 aut 
700 1 |a Kittler, Josef  |e verfasserin  |4 aut 
700 1 |a Christmas, William  |e verfasserin  |4 aut 
700 1 |a Wu, Xiao-Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 11 vom: 15. Nov., Seite 3425-40  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:24  |g year:2015  |g number:11  |g day:15  |g month:11  |g pages:3425-40 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2446944  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 11  |b 15  |c 11  |h 3425-40