Multi-level discriminative dictionary learning with application to large scale image classification

The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 10 vom: 15. Okt., Seite 3109-23
1. Verfasser: Shen, Li (VerfasserIn)
Weitere Verfasser: Sun, Gang, Huang, Qingming, Wang, Shuhui, Lin, Zhouchen, Wu, Enhua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM250013177
003 DE-627
005 20231224154824.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2438548  |2 doi 
028 5 2 |a pubmed24n0833.xml 
035 |a (DE-627)NLM250013177 
035 |a (NLM)26080049 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Li  |e verfasserin  |4 aut 
245 1 0 |a Multi-level discriminative dictionary learning with application to large scale image classification 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.08.2015 
500 |a Date Revised 17.06.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Sun, Gang  |e verfasserin  |4 aut 
700 1 |a Huang, Qingming  |e verfasserin  |4 aut 
700 1 |a Wang, Shuhui  |e verfasserin  |4 aut 
700 1 |a Lin, Zhouchen  |e verfasserin  |4 aut 
700 1 |a Wu, Enhua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 10 vom: 15. Okt., Seite 3109-23  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:10  |g day:15  |g month:10  |g pages:3109-23 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2438548  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 10  |b 15  |c 10  |h 3109-23