Atomistic and Molecular Effects in Electric Double Layers at High Surface Charges

The Poisson-Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. To investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 27 vom: 14. Juli, Seite 7496-502
1. Verfasser: Lee, Jonathan W (VerfasserIn)
Weitere Verfasser: Mani, Ali, Templeton, Jeremy A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The Poisson-Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. To investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson-Boltzmann theories can model this limit if they are augmented with atomic packing densities provided by MD. However, when the solvent is a highly polar molecule, water in this case, an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential's quadratic surface charge dependence is not obtained
Beschreibung:Date Completed 23.10.2015
Date Revised 14.07.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b00215