Synthesis of Absorption-Dominant Small Gold Nanorods and Their Plasmonic Properties

Absorption-dominant small Au nanorods with diameters of less than 10 nm are prepared using a facile seed-mediated growth method. The diameters of the small gold nanorods range from 6 to 9 nm, and their lengths vary from 16 to 45 nm. Their aspect ratios can be tailored from 2.7 to 4.7. As a result, t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 26 vom: 07. Juli, Seite 7418-26
1. Verfasser: Jia, Henglei (VerfasserIn)
Weitere Verfasser: Fang, Caihong, Zhu, Xiao-Ming, Ruan, Qifeng, Wang, Yi-Xiang J, Wang, Jianfang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Gold 7440-57-5 Silicon Dioxide 7631-86-9
Beschreibung
Zusammenfassung:Absorption-dominant small Au nanorods with diameters of less than 10 nm are prepared using a facile seed-mediated growth method. The diameters of the small gold nanorods range from 6 to 9 nm, and their lengths vary from 16 to 45 nm. Their aspect ratios can be tailored from 2.7 to 4.7. As a result, the longitudinal plasmon resonance wavelengths are readily tunable from ∼720 nm to ∼830 nm by changing the seed-to-Au(III) molar ratio in the growth solution. The fractions of the scattering in the total extinction of the small Au nanorods are found to be in the range of 0.005 to 0.025 with finite-difference time-domain simulations, confirming that the extinction values of these small Au nanorods are dominantly contributed to by the light absorption. Moreover, the small Au nanorod sample is coated with a dense silica layer for photothermal therapy with three cell lines. It shows improved photothermal therapy performance compared to a large Au nanorod sample for the same cellular Au contents. Our study suggests that small Au nanorods are promising light absorbers and photothermal therapy agents
Beschreibung:Date Completed 05.04.2016
Date Revised 07.07.2015
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b01444