Egocentric daily activity recognition via multitask clustering

Recognizing human activities from videos is a fundamental research problem in computer vision. Recently, there has been a growing interest in analyzing human behavior from data collected with wearable cameras. First-person cameras continuously record several hours of their wearers' life. To cop...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 10 vom: 09. Okt., Seite 2984-95
1. Verfasser: Yan, Yan (VerfasserIn)
Weitere Verfasser: Ricci, Elisa, Liu, Gaowen, Sebe, Nicu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM249889315
003 DE-627
005 20231224154543.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2438540  |2 doi 
028 5 2 |a pubmed24n0833.xml 
035 |a (DE-627)NLM249889315 
035 |a (NLM)26067371 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yan, Yan  |e verfasserin  |4 aut 
245 1 0 |a Egocentric daily activity recognition via multitask clustering 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.03.2016 
500 |a Date Revised 13.06.2015 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Recognizing human activities from videos is a fundamental research problem in computer vision. Recently, there has been a growing interest in analyzing human behavior from data collected with wearable cameras. First-person cameras continuously record several hours of their wearers' life. To cope with this vast amount of unlabeled and heterogeneous data, novel algorithmic solutions are required. In this paper, we propose a multitask clustering framework for activity of daily living analysis from visual data gathered from wearable cameras. Our intuition is that, even if the data are not annotated, it is possible to exploit the fact that the tasks of recognizing everyday activities of multiple individuals are related, since typically people perform the same actions in similar environments, e.g., people working in an office often read and write documents). In our framework, rather than clustering data from different users separately, we propose to look for clustering partitions which are coherent among related tasks. In particular, two novel multitask clustering algorithms, derived from a common optimization problem, are introduced. Our experimental evaluation, conducted both on synthetic data and on publicly available first-person vision data sets, shows that the proposed approach outperforms several single-task and multitask learning methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ricci, Elisa  |e verfasserin  |4 aut 
700 1 |a Liu, Gaowen  |e verfasserin  |4 aut 
700 1 |a Sebe, Nicu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 10 vom: 09. Okt., Seite 2984-95  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:10  |g day:09  |g month:10  |g pages:2984-95 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2438540  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 10  |b 09  |c 10  |h 2984-95