Small-Angle X-ray Scattering Study on Internal Microscopic Structures of Poly(N-isopropylacrylamide-co-tris(2,2'-bipyridyl))ruthenium(II) Complex Microgels
Internal microscopic structures of poly(N-isopropylacrylamide-co-tris(2,2'-bipyridyl))ruthenium(II) complex microgels were investigated using small-angle X-ray scattering (SAXS) in the extended q-range of 0.07 ≤ q/nm(-1) ≤ 20. The microgels were prepared by aqueous free-radical precipitation po...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 26 vom: 07. Juli, Seite 7228-37 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Internal microscopic structures of poly(N-isopropylacrylamide-co-tris(2,2'-bipyridyl))ruthenium(II) complex microgels were investigated using small-angle X-ray scattering (SAXS) in the extended q-range of 0.07 ≤ q/nm(-1) ≤ 20. The microgels were prepared by aqueous free-radical precipitation polymerization, resulting in formation of monodispersed, submicrometer-sized microgels, which was confirmed by transmission electron microscopy and dynamic light scattering. To reveal the changes in the microscopic structures of the microgels during swelling/deswelling or dispersing/flocculating oscillation, the redox state of Ru(bpy)3 complexes was fixed in the microgels using Ce(IV) or Ce(III) ions under high ionic strength (1.5 M) during the SAXS measurements. The scattering intensity of the microgels manifested five different structural features. In particular, the correlation length (ξ), which was obtained from the fitting analysis using the Ornstein-Zernike equation, of the microgels both in the reduced and oxidized Ru(bpy)3 states exhibited divergent-like behavior. In addition, a low-q peak centered at q ≈ 5 nm(-1) did not appear clearly in both the reduced [Ru(bpy)3](2+) and oxidized [Ru(bpy)3](3+) states, indicating that the formation of a polymer-rich domain was suppressed; thus, Ru(bpy)3 complexes can be active even though the microgels are deswollen or flocculated during the oscillation reaction |
---|---|
Beschreibung: | Date Completed 09.09.2015 Date Revised 07.07.2015 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.5b01164 |